A reproducible oral microcosm biofilm model for testing dental materials
Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproduci...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2012-12, Vol.113 (6), p.1540-1553 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1553 |
---|---|
container_issue | 6 |
container_start_page | 1540 |
container_title | Journal of applied microbiology |
container_volume | 113 |
creator | Rudney, J.D. Chen, R. Lenton, P. Li, J. Li, Y. Jones, R.S. Reilly, C. Fok, A.S. Aparicio, C. |
description | Aims
Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model.
Methods and Results
Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together.
Conclusions
This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries.
Significance and Impact of the Study
This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. |
doi_str_mv | 10.1111/j.1365-2672.2012.05439.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3501590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070039541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</originalsourceid><addsrcrecordid>eNqNkVtv1DAQhSMEoqXwF1AkhMRLgseOY_sBpG3phWqBB26PluPYxUsSL3ZStv8ep7sslxfwy1ia74zOzMmyHFAJ6T1flUBqWuCa4RIjwCWiFRHl5k52uG_cvf1XBUUMH2QPYlwhBATR-n52gLHAFAAdZheLPJh18O2kXdOZ3AfV5b3TwWsf-7xx3rquz3vfmi63PuSjiaMbrvLWDOOMqtEEp7r4MLtnUzGPdvUo-3h2-uHkoli-O399slgWukZEFJrQtiFYAFa4tazllkErDGK84caqutWmQogrEMgmRCCua8HAEm1bTjkjR9nL7dz11PQm4cOYLMt1cL0KN9IrJ__sDO6LvPLXklAEVKA04NluQPDfprSN7F3UpuvUYPwUJWDKWIUBxL9RYJwhLCgk9Mlf6MpPYUiXkFAREBwQnwfyLZXuG2Mwdu8bkJyTlSs5ByjnAOWcrLxNVm6S9PHve--FP6NMwNMdoKJWnQ1q0C7-4uo6uahp4l5sue-uMzf_bUBeLt7Mv6QvtnoXR7PZ61X4KmtGGJWf357L5dkxXIr3r-Qn8gO8_82f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431981089</pqid></control><display><type>article</type><title>A reproducible oral microcosm biofilm model for testing dental materials</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</creator><creatorcontrib>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</creatorcontrib><description>Aims
Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model.
Methods and Results
Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together.
Conclusions
This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries.
Significance and Impact of the Study
This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2012.05439.x</identifier><identifier>PMID: 22925110</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adult ; biofilm reactors ; Biofilms ; Biofilms - growth & development ; Biological and medical sciences ; Bioreactors ; Child ; Colony Count, Microbial ; composite resin restorations ; Culture Media - chemistry ; Dental caries ; dental materials ; Dental Materials - analysis ; Dental Plaque - microbiology ; DNA, Bacterial - analysis ; Durapatite - analysis ; Fundamental and applied biological sciences. Psychology ; human oral microbial identification microarray ; Humans ; Hydroxyapatite ; Materials Testing ; Microbiology ; Oligonucleotide Array Sequence Analysis ; oral microbiota ; oral microcosms ; Saliva - microbiology ; Streptococcus ; Streptococcus - growth & development ; Sucrose ; Sucrose - chemistry ; Veillonella ; Veillonella - growth & development</subject><ispartof>Journal of applied microbiology, 2012-12, Vol.113 (6), p.1540-1553</ispartof><rights>2012 The Society for Applied Microbiology</rights><rights>2014 INIST-CNRS</rights><rights>2012 The Society for Applied Microbiology.</rights><rights>Copyright © 2012 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</citedby><cites>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2012.05439.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2012.05439.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26619865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22925110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudney, J.D.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lenton, P.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Jones, R.S.</creatorcontrib><creatorcontrib>Reilly, C.</creatorcontrib><creatorcontrib>Fok, A.S.</creatorcontrib><creatorcontrib>Aparicio, C.</creatorcontrib><title>A reproducible oral microcosm biofilm model for testing dental materials</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims
Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model.
Methods and Results
Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together.
Conclusions
This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries.
Significance and Impact of the Study
This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</description><subject>Adult</subject><subject>biofilm reactors</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Child</subject><subject>Colony Count, Microbial</subject><subject>composite resin restorations</subject><subject>Culture Media - chemistry</subject><subject>Dental caries</subject><subject>dental materials</subject><subject>Dental Materials - analysis</subject><subject>Dental Plaque - microbiology</subject><subject>DNA, Bacterial - analysis</subject><subject>Durapatite - analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>human oral microbial identification microarray</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Materials Testing</subject><subject>Microbiology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>oral microbiota</subject><subject>oral microcosms</subject><subject>Saliva - microbiology</subject><subject>Streptococcus</subject><subject>Streptococcus - growth & development</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Veillonella</subject><subject>Veillonella - growth & development</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtv1DAQhSMEoqXwF1AkhMRLgseOY_sBpG3phWqBB26PluPYxUsSL3ZStv8ep7sslxfwy1ia74zOzMmyHFAJ6T1flUBqWuCa4RIjwCWiFRHl5k52uG_cvf1XBUUMH2QPYlwhBATR-n52gLHAFAAdZheLPJh18O2kXdOZ3AfV5b3TwWsf-7xx3rquz3vfmi63PuSjiaMbrvLWDOOMqtEEp7r4MLtnUzGPdvUo-3h2-uHkoli-O399slgWukZEFJrQtiFYAFa4tazllkErDGK84caqutWmQogrEMgmRCCua8HAEm1bTjkjR9nL7dz11PQm4cOYLMt1cL0KN9IrJ__sDO6LvPLXklAEVKA04NluQPDfprSN7F3UpuvUYPwUJWDKWIUBxL9RYJwhLCgk9Mlf6MpPYUiXkFAREBwQnwfyLZXuG2Mwdu8bkJyTlSs5ByjnAOWcrLxNVm6S9PHve--FP6NMwNMdoKJWnQ1q0C7-4uo6uahp4l5sue-uMzf_bUBeLt7Mv6QvtnoXR7PZ61X4KmtGGJWf357L5dkxXIr3r-Qn8gO8_82f</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Rudney, J.D.</creator><creator>Chen, R.</creator><creator>Lenton, P.</creator><creator>Li, J.</creator><creator>Li, Y.</creator><creator>Jones, R.S.</creator><creator>Reilly, C.</creator><creator>Fok, A.S.</creator><creator>Aparicio, C.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>A reproducible oral microcosm biofilm model for testing dental materials</title><author>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>biofilm reactors</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Child</topic><topic>Colony Count, Microbial</topic><topic>composite resin restorations</topic><topic>Culture Media - chemistry</topic><topic>Dental caries</topic><topic>dental materials</topic><topic>Dental Materials - analysis</topic><topic>Dental Plaque - microbiology</topic><topic>DNA, Bacterial - analysis</topic><topic>Durapatite - analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>human oral microbial identification microarray</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Materials Testing</topic><topic>Microbiology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>oral microbiota</topic><topic>oral microcosms</topic><topic>Saliva - microbiology</topic><topic>Streptococcus</topic><topic>Streptococcus - growth & development</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Veillonella</topic><topic>Veillonella - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudney, J.D.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lenton, P.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Jones, R.S.</creatorcontrib><creatorcontrib>Reilly, C.</creatorcontrib><creatorcontrib>Fok, A.S.</creatorcontrib><creatorcontrib>Aparicio, C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudney, J.D.</au><au>Chen, R.</au><au>Lenton, P.</au><au>Li, J.</au><au>Li, Y.</au><au>Jones, R.S.</au><au>Reilly, C.</au><au>Fok, A.S.</au><au>Aparicio, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reproducible oral microcosm biofilm model for testing dental materials</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>113</volume><issue>6</issue><spage>1540</spage><epage>1553</epage><pages>1540-1553</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>Aims
Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model.
Methods and Results
Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together.
Conclusions
This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries.
Significance and Impact of the Study
This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>22925110</pmid><doi>10.1111/j.1365-2672.2012.05439.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2012-12, Vol.113 (6), p.1540-1553 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3501590 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adult biofilm reactors Biofilms Biofilms - growth & development Biological and medical sciences Bioreactors Child Colony Count, Microbial composite resin restorations Culture Media - chemistry Dental caries dental materials Dental Materials - analysis Dental Plaque - microbiology DNA, Bacterial - analysis Durapatite - analysis Fundamental and applied biological sciences. Psychology human oral microbial identification microarray Humans Hydroxyapatite Materials Testing Microbiology Oligonucleotide Array Sequence Analysis oral microbiota oral microcosms Saliva - microbiology Streptococcus Streptococcus - growth & development Sucrose Sucrose - chemistry Veillonella Veillonella - growth & development |
title | A reproducible oral microcosm biofilm model for testing dental materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reproducible%20oral%20microcosm%20biofilm%20model%20for%20testing%20dental%20materials&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Rudney,%20J.D.&rft.date=2012-12&rft.volume=113&rft.issue=6&rft.spage=1540&rft.epage=1553&rft.pages=1540-1553&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/j.1365-2672.2012.05439.x&rft_dat=%3Cproquest_pubme%3E3070039541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431981089&rft_id=info:pmid/22925110&rfr_iscdi=true |