A reproducible oral microcosm biofilm model for testing dental materials

Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproduci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2012-12, Vol.113 (6), p.1540-1553
Hauptverfasser: Rudney, J.D., Chen, R., Lenton, P., Li, J., Li, Y., Jones, R.S., Reilly, C., Fok, A.S., Aparicio, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1553
container_issue 6
container_start_page 1540
container_title Journal of applied microbiology
container_volume 113
creator Rudney, J.D.
Chen, R.
Lenton, P.
Li, J.
Li, Y.
Jones, R.S.
Reilly, C.
Fok, A.S.
Aparicio, C.
description Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.
doi_str_mv 10.1111/j.1365-2672.2012.05439.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3501590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070039541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</originalsourceid><addsrcrecordid>eNqNkVtv1DAQhSMEoqXwF1AkhMRLgseOY_sBpG3phWqBB26PluPYxUsSL3ZStv8ep7sslxfwy1ia74zOzMmyHFAJ6T1flUBqWuCa4RIjwCWiFRHl5k52uG_cvf1XBUUMH2QPYlwhBATR-n52gLHAFAAdZheLPJh18O2kXdOZ3AfV5b3TwWsf-7xx3rquz3vfmi63PuSjiaMbrvLWDOOMqtEEp7r4MLtnUzGPdvUo-3h2-uHkoli-O399slgWukZEFJrQtiFYAFa4tazllkErDGK84caqutWmQogrEMgmRCCua8HAEm1bTjkjR9nL7dz11PQm4cOYLMt1cL0KN9IrJ__sDO6LvPLXklAEVKA04NluQPDfprSN7F3UpuvUYPwUJWDKWIUBxL9RYJwhLCgk9Mlf6MpPYUiXkFAREBwQnwfyLZXuG2Mwdu8bkJyTlSs5ByjnAOWcrLxNVm6S9PHve--FP6NMwNMdoKJWnQ1q0C7-4uo6uahp4l5sue-uMzf_bUBeLt7Mv6QvtnoXR7PZ61X4KmtGGJWf357L5dkxXIr3r-Qn8gO8_82f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431981089</pqid></control><display><type>article</type><title>A reproducible oral microcosm biofilm model for testing dental materials</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</creator><creatorcontrib>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</creatorcontrib><description>Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2012.05439.x</identifier><identifier>PMID: 22925110</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adult ; biofilm reactors ; Biofilms ; Biofilms - growth &amp; development ; Biological and medical sciences ; Bioreactors ; Child ; Colony Count, Microbial ; composite resin restorations ; Culture Media - chemistry ; Dental caries ; dental materials ; Dental Materials - analysis ; Dental Plaque - microbiology ; DNA, Bacterial - analysis ; Durapatite - analysis ; Fundamental and applied biological sciences. Psychology ; human oral microbial identification microarray ; Humans ; Hydroxyapatite ; Materials Testing ; Microbiology ; Oligonucleotide Array Sequence Analysis ; oral microbiota ; oral microcosms ; Saliva - microbiology ; Streptococcus ; Streptococcus - growth &amp; development ; Sucrose ; Sucrose - chemistry ; Veillonella ; Veillonella - growth &amp; development</subject><ispartof>Journal of applied microbiology, 2012-12, Vol.113 (6), p.1540-1553</ispartof><rights>2012 The Society for Applied Microbiology</rights><rights>2014 INIST-CNRS</rights><rights>2012 The Society for Applied Microbiology.</rights><rights>Copyright © 2012 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</citedby><cites>FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2012.05439.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2012.05439.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26619865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22925110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudney, J.D.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lenton, P.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Jones, R.S.</creatorcontrib><creatorcontrib>Reilly, C.</creatorcontrib><creatorcontrib>Fok, A.S.</creatorcontrib><creatorcontrib>Aparicio, C.</creatorcontrib><title>A reproducible oral microcosm biofilm model for testing dental materials</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</description><subject>Adult</subject><subject>biofilm reactors</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Child</subject><subject>Colony Count, Microbial</subject><subject>composite resin restorations</subject><subject>Culture Media - chemistry</subject><subject>Dental caries</subject><subject>dental materials</subject><subject>Dental Materials - analysis</subject><subject>Dental Plaque - microbiology</subject><subject>DNA, Bacterial - analysis</subject><subject>Durapatite - analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>human oral microbial identification microarray</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Materials Testing</subject><subject>Microbiology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>oral microbiota</subject><subject>oral microcosms</subject><subject>Saliva - microbiology</subject><subject>Streptococcus</subject><subject>Streptococcus - growth &amp; development</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Veillonella</subject><subject>Veillonella - growth &amp; development</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtv1DAQhSMEoqXwF1AkhMRLgseOY_sBpG3phWqBB26PluPYxUsSL3ZStv8ep7sslxfwy1ia74zOzMmyHFAJ6T1flUBqWuCa4RIjwCWiFRHl5k52uG_cvf1XBUUMH2QPYlwhBATR-n52gLHAFAAdZheLPJh18O2kXdOZ3AfV5b3TwWsf-7xx3rquz3vfmi63PuSjiaMbrvLWDOOMqtEEp7r4MLtnUzGPdvUo-3h2-uHkoli-O399slgWukZEFJrQtiFYAFa4tazllkErDGK84caqutWmQogrEMgmRCCua8HAEm1bTjkjR9nL7dz11PQm4cOYLMt1cL0KN9IrJ__sDO6LvPLXklAEVKA04NluQPDfprSN7F3UpuvUYPwUJWDKWIUBxL9RYJwhLCgk9Mlf6MpPYUiXkFAREBwQnwfyLZXuG2Mwdu8bkJyTlSs5ByjnAOWcrLxNVm6S9PHve--FP6NMwNMdoKJWnQ1q0C7-4uo6uahp4l5sue-uMzf_bUBeLt7Mv6QvtnoXR7PZ61X4KmtGGJWf357L5dkxXIr3r-Qn8gO8_82f</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Rudney, J.D.</creator><creator>Chen, R.</creator><creator>Lenton, P.</creator><creator>Li, J.</creator><creator>Li, Y.</creator><creator>Jones, R.S.</creator><creator>Reilly, C.</creator><creator>Fok, A.S.</creator><creator>Aparicio, C.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>A reproducible oral microcosm biofilm model for testing dental materials</title><author>Rudney, J.D. ; Chen, R. ; Lenton, P. ; Li, J. ; Li, Y. ; Jones, R.S. ; Reilly, C. ; Fok, A.S. ; Aparicio, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6039-c35db32912a2df7d8f71d9e078b8efa6dce4008a190f2a2908c6971f3cfd85873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>biofilm reactors</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Child</topic><topic>Colony Count, Microbial</topic><topic>composite resin restorations</topic><topic>Culture Media - chemistry</topic><topic>Dental caries</topic><topic>dental materials</topic><topic>Dental Materials - analysis</topic><topic>Dental Plaque - microbiology</topic><topic>DNA, Bacterial - analysis</topic><topic>Durapatite - analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>human oral microbial identification microarray</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Materials Testing</topic><topic>Microbiology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>oral microbiota</topic><topic>oral microcosms</topic><topic>Saliva - microbiology</topic><topic>Streptococcus</topic><topic>Streptococcus - growth &amp; development</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Veillonella</topic><topic>Veillonella - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudney, J.D.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lenton, P.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Jones, R.S.</creatorcontrib><creatorcontrib>Reilly, C.</creatorcontrib><creatorcontrib>Fok, A.S.</creatorcontrib><creatorcontrib>Aparicio, C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudney, J.D.</au><au>Chen, R.</au><au>Lenton, P.</au><au>Li, J.</au><au>Li, Y.</au><au>Jones, R.S.</au><au>Reilly, C.</au><au>Fok, A.S.</au><au>Aparicio, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reproducible oral microcosm biofilm model for testing dental materials</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>113</volume><issue>6</issue><spage>1540</spage><epage>1553</epage><pages>1540-1553</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>Aims Most studies of biofilm effects on dental materials use single‐species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>22925110</pmid><doi>10.1111/j.1365-2672.2012.05439.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2012-12, Vol.113 (6), p.1540-1553
issn 1364-5072
1365-2672
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3501590
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
biofilm reactors
Biofilms
Biofilms - growth & development
Biological and medical sciences
Bioreactors
Child
Colony Count, Microbial
composite resin restorations
Culture Media - chemistry
Dental caries
dental materials
Dental Materials - analysis
Dental Plaque - microbiology
DNA, Bacterial - analysis
Durapatite - analysis
Fundamental and applied biological sciences. Psychology
human oral microbial identification microarray
Humans
Hydroxyapatite
Materials Testing
Microbiology
Oligonucleotide Array Sequence Analysis
oral microbiota
oral microcosms
Saliva - microbiology
Streptococcus
Streptococcus - growth & development
Sucrose
Sucrose - chemistry
Veillonella
Veillonella - growth & development
title A reproducible oral microcosm biofilm model for testing dental materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reproducible%20oral%20microcosm%20biofilm%20model%20for%20testing%20dental%20materials&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Rudney,%20J.D.&rft.date=2012-12&rft.volume=113&rft.issue=6&rft.spage=1540&rft.epage=1553&rft.pages=1540-1553&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/j.1365-2672.2012.05439.x&rft_dat=%3Cproquest_pubme%3E3070039541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431981089&rft_id=info:pmid/22925110&rfr_iscdi=true