Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses
Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that...
Gespeichert in:
Veröffentlicht in: | Cell 2012-11, Vol.151 (4), p.709-723 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 4 |
container_start_page | 709 |
container_title | Cell |
container_volume | 151 |
creator | Clement, James P. Aceti, Massimiliano Creson, Thomas K. Ozkan, Emin D. Shi, Yulin Reish, Nicholas J. Almonte, Antoine G. Miller, Brooke H. Wiltgen, Brian J. Miller, Courtney A. Xu, Xiangmin Rumbaugh, Gavin |
description | Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
[Display omitted]
► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition
A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development. |
doi_str_mv | 10.1016/j.cell.2012.08.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3500766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412012408</els_id><sourcerecordid>1419364028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EokvhBTggH7kk2E4cOxJCqrZQKrVQqXDgZDnOv1uvEjvYzkr79jhsqeBCT5blb0bjGYReU1JSQpt3u9LAMJSMUFYSWZKaP0ErSlpR1FSwp2hFSMsK2Yj6BL2IcUcIkZzz5-iEVbSmvKpXyN3odOe34KzBtz--XJzdUHw9J52sdxFfjpO2Aa_91tlk94DPYQ-Dn0ZwCXcHfG5jmKdk3RZf6zSH3zLsN5lzfciSbDpZB_j24PQUIb5EzzZ6iPDq_jxF3z99_Lb-XFx9vbhcn10VhkuRCtBadgJ0WxNGdSN101cNY6bJ945pKhk3tObAG9L0m46aqhfQGd4S2XEiZXWKPhx9p7kboTc5b9CDmoIddTgor63698XZO7X1e1VxQkTTZIO39wbB_5whJjXauNStHfg5KpbLJDR3Kx5Fc9VttSSXj6OUU5EDiDqj7Iia4GMMsHkIT4la5lc7tSjVMr8iUuX5s-jN399-kPzZOwPvjwDk8vcWgorGgjPQ2wAmqd7b__n_Ag2Kwds</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151700774</pqid></control><display><type>article</type><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</creator><creatorcontrib>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</creatorcontrib><description>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
[Display omitted]
► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition
A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.08.045</identifier><identifier>PMID: 23141534</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adulthood ; animal models ; Animals ; autism ; cognition ; Cognition Disorders - genetics ; Cognition Disorders - metabolism ; cognitive development ; Dendritic Spines - metabolism ; Disease Models, Animal ; early development ; Female ; genes ; Haploinsufficiency ; hippocampus ; Hippocampus - embryology ; Hippocampus - metabolism ; Humans ; Male ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mutation ; Nerve Net - metabolism ; postpartum period ; proteins ; ras GTPase-Activating Proteins - genetics ; ras GTPase-Activating Proteins - metabolism ; synapse ; Synapses - metabolism</subject><ispartof>Cell, 2012-11, Vol.151 (4), p.709-723</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</citedby><cites>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412012408$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23141534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clement, James P.</creatorcontrib><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K.</creatorcontrib><creatorcontrib>Ozkan, Emin D.</creatorcontrib><creatorcontrib>Shi, Yulin</creatorcontrib><creatorcontrib>Reish, Nicholas J.</creatorcontrib><creatorcontrib>Almonte, Antoine G.</creatorcontrib><creatorcontrib>Miller, Brooke H.</creatorcontrib><creatorcontrib>Wiltgen, Brian J.</creatorcontrib><creatorcontrib>Miller, Courtney A.</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><title>Cell</title><addtitle>Cell</addtitle><description>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
[Display omitted]
► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition
A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</description><subject>adulthood</subject><subject>animal models</subject><subject>Animals</subject><subject>autism</subject><subject>cognition</subject><subject>Cognition Disorders - genetics</subject><subject>Cognition Disorders - metabolism</subject><subject>cognitive development</subject><subject>Dendritic Spines - metabolism</subject><subject>Disease Models, Animal</subject><subject>early development</subject><subject>Female</subject><subject>genes</subject><subject>Haploinsufficiency</subject><subject>hippocampus</subject><subject>Hippocampus - embryology</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mutation</subject><subject>Nerve Net - metabolism</subject><subject>postpartum period</subject><subject>proteins</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>ras GTPase-Activating Proteins - metabolism</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EokvhBTggH7kk2E4cOxJCqrZQKrVQqXDgZDnOv1uvEjvYzkr79jhsqeBCT5blb0bjGYReU1JSQpt3u9LAMJSMUFYSWZKaP0ErSlpR1FSwp2hFSMsK2Yj6BL2IcUcIkZzz5-iEVbSmvKpXyN3odOe34KzBtz--XJzdUHw9J52sdxFfjpO2Aa_91tlk94DPYQ-Dn0ZwCXcHfG5jmKdk3RZf6zSH3zLsN5lzfciSbDpZB_j24PQUIb5EzzZ6iPDq_jxF3z99_Lb-XFx9vbhcn10VhkuRCtBadgJ0WxNGdSN101cNY6bJ945pKhk3tObAG9L0m46aqhfQGd4S2XEiZXWKPhx9p7kboTc5b9CDmoIddTgor63698XZO7X1e1VxQkTTZIO39wbB_5whJjXauNStHfg5KpbLJDR3Kx5Fc9VttSSXj6OUU5EDiDqj7Iia4GMMsHkIT4la5lc7tSjVMr8iUuX5s-jN399-kPzZOwPvjwDk8vcWgorGgjPQ2wAmqd7b__n_Ag2Kwds</recordid><startdate>20121109</startdate><enddate>20121109</enddate><creator>Clement, James P.</creator><creator>Aceti, Massimiliano</creator><creator>Creson, Thomas K.</creator><creator>Ozkan, Emin D.</creator><creator>Shi, Yulin</creator><creator>Reish, Nicholas J.</creator><creator>Almonte, Antoine G.</creator><creator>Miller, Brooke H.</creator><creator>Wiltgen, Brian J.</creator><creator>Miller, Courtney A.</creator><creator>Xu, Xiangmin</creator><creator>Rumbaugh, Gavin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121109</creationdate><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><author>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adulthood</topic><topic>animal models</topic><topic>Animals</topic><topic>autism</topic><topic>cognition</topic><topic>Cognition Disorders - genetics</topic><topic>Cognition Disorders - metabolism</topic><topic>cognitive development</topic><topic>Dendritic Spines - metabolism</topic><topic>Disease Models, Animal</topic><topic>early development</topic><topic>Female</topic><topic>genes</topic><topic>Haploinsufficiency</topic><topic>hippocampus</topic><topic>Hippocampus - embryology</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mutation</topic><topic>Nerve Net - metabolism</topic><topic>postpartum period</topic><topic>proteins</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>ras GTPase-Activating Proteins - metabolism</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clement, James P.</creatorcontrib><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K.</creatorcontrib><creatorcontrib>Ozkan, Emin D.</creatorcontrib><creatorcontrib>Shi, Yulin</creatorcontrib><creatorcontrib>Reish, Nicholas J.</creatorcontrib><creatorcontrib>Almonte, Antoine G.</creatorcontrib><creatorcontrib>Miller, Brooke H.</creatorcontrib><creatorcontrib>Wiltgen, Brian J.</creatorcontrib><creatorcontrib>Miller, Courtney A.</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clement, James P.</au><au>Aceti, Massimiliano</au><au>Creson, Thomas K.</au><au>Ozkan, Emin D.</au><au>Shi, Yulin</au><au>Reish, Nicholas J.</au><au>Almonte, Antoine G.</au><au>Miller, Brooke H.</au><au>Wiltgen, Brian J.</au><au>Miller, Courtney A.</au><au>Xu, Xiangmin</au><au>Rumbaugh, Gavin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-11-09</date><risdate>2012</risdate><volume>151</volume><issue>4</issue><spage>709</spage><epage>723</epage><pages>709-723</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
[Display omitted]
► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition
A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23141534</pmid><doi>10.1016/j.cell.2012.08.045</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2012-11, Vol.151 (4), p.709-723 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3500766 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | adulthood animal models Animals autism cognition Cognition Disorders - genetics Cognition Disorders - metabolism cognitive development Dendritic Spines - metabolism Disease Models, Animal early development Female genes Haploinsufficiency hippocampus Hippocampus - embryology Hippocampus - metabolism Humans Male Memory Mice Mice, Inbred C57BL Mice, Knockout mutation Nerve Net - metabolism postpartum period proteins ras GTPase-Activating Proteins - genetics ras GTPase-Activating Proteins - metabolism synapse Synapses - metabolism |
title | Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathogenic%20SYNGAP1%20Mutations%20Impair%20Cognitive%20Development%20by%20Disrupting%20Maturation%20of%20Dendritic%20Spine%20Synapses&rft.jtitle=Cell&rft.au=Clement,%20James%C2%A0P.&rft.date=2012-11-09&rft.volume=151&rft.issue=4&rft.spage=709&rft.epage=723&rft.pages=709-723&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.08.045&rft_dat=%3Cproquest_pubme%3E1419364028%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151700774&rft_id=info:pmid/23141534&rft_els_id=S0092867412012408&rfr_iscdi=true |