Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses

Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-11, Vol.151 (4), p.709-723
Hauptverfasser: Clement, James P., Aceti, Massimiliano, Creson, Thomas K., Ozkan, Emin D., Shi, Yulin, Reish, Nicholas J., Almonte, Antoine G., Miller, Brooke H., Wiltgen, Brian J., Miller, Courtney A., Xu, Xiangmin, Rumbaugh, Gavin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 4
container_start_page 709
container_title Cell
container_volume 151
creator Clement, James P.
Aceti, Massimiliano
Creson, Thomas K.
Ozkan, Emin D.
Shi, Yulin
Reish, Nicholas J.
Almonte, Antoine G.
Miller, Brooke H.
Wiltgen, Brian J.
Miller, Courtney A.
Xu, Xiangmin
Rumbaugh, Gavin
description Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. [Display omitted] ► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.
doi_str_mv 10.1016/j.cell.2012.08.045
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3500766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412012408</els_id><sourcerecordid>1419364028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EokvhBTggH7kk2E4cOxJCqrZQKrVQqXDgZDnOv1uvEjvYzkr79jhsqeBCT5blb0bjGYReU1JSQpt3u9LAMJSMUFYSWZKaP0ErSlpR1FSwp2hFSMsK2Yj6BL2IcUcIkZzz5-iEVbSmvKpXyN3odOe34KzBtz--XJzdUHw9J52sdxFfjpO2Aa_91tlk94DPYQ-Dn0ZwCXcHfG5jmKdk3RZf6zSH3zLsN5lzfciSbDpZB_j24PQUIb5EzzZ6iPDq_jxF3z99_Lb-XFx9vbhcn10VhkuRCtBadgJ0WxNGdSN101cNY6bJ945pKhk3tObAG9L0m46aqhfQGd4S2XEiZXWKPhx9p7kboTc5b9CDmoIddTgor63698XZO7X1e1VxQkTTZIO39wbB_5whJjXauNStHfg5KpbLJDR3Kx5Fc9VttSSXj6OUU5EDiDqj7Iia4GMMsHkIT4la5lc7tSjVMr8iUuX5s-jN399-kPzZOwPvjwDk8vcWgorGgjPQ2wAmqd7b__n_Ag2Kwds</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151700774</pqid></control><display><type>article</type><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</creator><creatorcontrib>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</creatorcontrib><description>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. [Display omitted] ► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.08.045</identifier><identifier>PMID: 23141534</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adulthood ; animal models ; Animals ; autism ; cognition ; Cognition Disorders - genetics ; Cognition Disorders - metabolism ; cognitive development ; Dendritic Spines - metabolism ; Disease Models, Animal ; early development ; Female ; genes ; Haploinsufficiency ; hippocampus ; Hippocampus - embryology ; Hippocampus - metabolism ; Humans ; Male ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mutation ; Nerve Net - metabolism ; postpartum period ; proteins ; ras GTPase-Activating Proteins - genetics ; ras GTPase-Activating Proteins - metabolism ; synapse ; Synapses - metabolism</subject><ispartof>Cell, 2012-11, Vol.151 (4), p.709-723</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</citedby><cites>FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412012408$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23141534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clement, James P.</creatorcontrib><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K.</creatorcontrib><creatorcontrib>Ozkan, Emin D.</creatorcontrib><creatorcontrib>Shi, Yulin</creatorcontrib><creatorcontrib>Reish, Nicholas J.</creatorcontrib><creatorcontrib>Almonte, Antoine G.</creatorcontrib><creatorcontrib>Miller, Brooke H.</creatorcontrib><creatorcontrib>Wiltgen, Brian J.</creatorcontrib><creatorcontrib>Miller, Courtney A.</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><title>Cell</title><addtitle>Cell</addtitle><description>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. [Display omitted] ► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</description><subject>adulthood</subject><subject>animal models</subject><subject>Animals</subject><subject>autism</subject><subject>cognition</subject><subject>Cognition Disorders - genetics</subject><subject>Cognition Disorders - metabolism</subject><subject>cognitive development</subject><subject>Dendritic Spines - metabolism</subject><subject>Disease Models, Animal</subject><subject>early development</subject><subject>Female</subject><subject>genes</subject><subject>Haploinsufficiency</subject><subject>hippocampus</subject><subject>Hippocampus - embryology</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mutation</subject><subject>Nerve Net - metabolism</subject><subject>postpartum period</subject><subject>proteins</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>ras GTPase-Activating Proteins - metabolism</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EokvhBTggH7kk2E4cOxJCqrZQKrVQqXDgZDnOv1uvEjvYzkr79jhsqeBCT5blb0bjGYReU1JSQpt3u9LAMJSMUFYSWZKaP0ErSlpR1FSwp2hFSMsK2Yj6BL2IcUcIkZzz5-iEVbSmvKpXyN3odOe34KzBtz--XJzdUHw9J52sdxFfjpO2Aa_91tlk94DPYQ-Dn0ZwCXcHfG5jmKdk3RZf6zSH3zLsN5lzfciSbDpZB_j24PQUIb5EzzZ6iPDq_jxF3z99_Lb-XFx9vbhcn10VhkuRCtBadgJ0WxNGdSN101cNY6bJ945pKhk3tObAG9L0m46aqhfQGd4S2XEiZXWKPhx9p7kboTc5b9CDmoIddTgor63698XZO7X1e1VxQkTTZIO39wbB_5whJjXauNStHfg5KpbLJDR3Kx5Fc9VttSSXj6OUU5EDiDqj7Iia4GMMsHkIT4la5lc7tSjVMr8iUuX5s-jN399-kPzZOwPvjwDk8vcWgorGgjPQ2wAmqd7b__n_Ag2Kwds</recordid><startdate>20121109</startdate><enddate>20121109</enddate><creator>Clement, James P.</creator><creator>Aceti, Massimiliano</creator><creator>Creson, Thomas K.</creator><creator>Ozkan, Emin D.</creator><creator>Shi, Yulin</creator><creator>Reish, Nicholas J.</creator><creator>Almonte, Antoine G.</creator><creator>Miller, Brooke H.</creator><creator>Wiltgen, Brian J.</creator><creator>Miller, Courtney A.</creator><creator>Xu, Xiangmin</creator><creator>Rumbaugh, Gavin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121109</creationdate><title>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</title><author>Clement, James P. ; Aceti, Massimiliano ; Creson, Thomas K. ; Ozkan, Emin D. ; Shi, Yulin ; Reish, Nicholas J. ; Almonte, Antoine G. ; Miller, Brooke H. ; Wiltgen, Brian J. ; Miller, Courtney A. ; Xu, Xiangmin ; Rumbaugh, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-eaa8b7ea94021a68a6d3622c6402b2a1825c145e5606dfb1c3d7ebc5908b50883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adulthood</topic><topic>animal models</topic><topic>Animals</topic><topic>autism</topic><topic>cognition</topic><topic>Cognition Disorders - genetics</topic><topic>Cognition Disorders - metabolism</topic><topic>cognitive development</topic><topic>Dendritic Spines - metabolism</topic><topic>Disease Models, Animal</topic><topic>early development</topic><topic>Female</topic><topic>genes</topic><topic>Haploinsufficiency</topic><topic>hippocampus</topic><topic>Hippocampus - embryology</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mutation</topic><topic>Nerve Net - metabolism</topic><topic>postpartum period</topic><topic>proteins</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>ras GTPase-Activating Proteins - metabolism</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clement, James P.</creatorcontrib><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K.</creatorcontrib><creatorcontrib>Ozkan, Emin D.</creatorcontrib><creatorcontrib>Shi, Yulin</creatorcontrib><creatorcontrib>Reish, Nicholas J.</creatorcontrib><creatorcontrib>Almonte, Antoine G.</creatorcontrib><creatorcontrib>Miller, Brooke H.</creatorcontrib><creatorcontrib>Wiltgen, Brian J.</creatorcontrib><creatorcontrib>Miller, Courtney A.</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clement, James P.</au><au>Aceti, Massimiliano</au><au>Creson, Thomas K.</au><au>Ozkan, Emin D.</au><au>Shi, Yulin</au><au>Reish, Nicholas J.</au><au>Almonte, Antoine G.</au><au>Miller, Brooke H.</au><au>Wiltgen, Brian J.</au><au>Miller, Courtney A.</au><au>Xu, Xiangmin</au><au>Rumbaugh, Gavin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-11-09</date><risdate>2012</risdate><volume>151</volume><issue>4</issue><spage>709</spage><epage>723</epage><pages>709-723</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. [Display omitted] ► Pathogenic SYNGAP1 mutations promote early maturation of hippocampal spine synapses ► Mutations lead to neonatal hyperactivity of the hippocampal trisynaptic circuit ► Mutations have greatest impact during the first 3 weeks of development ► Reversal of mutations in adults does not improve behavior and cognition A monogenic mouse model connects premature development of hippocampal dendritic spine synapses to life-long disruptions in cognition and memory. These findings indicate that the pace of synapse maturation in early life is a critical determinant of normal intellectual development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23141534</pmid><doi>10.1016/j.cell.2012.08.045</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-11, Vol.151 (4), p.709-723
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3500766
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects adulthood
animal models
Animals
autism
cognition
Cognition Disorders - genetics
Cognition Disorders - metabolism
cognitive development
Dendritic Spines - metabolism
Disease Models, Animal
early development
Female
genes
Haploinsufficiency
hippocampus
Hippocampus - embryology
Hippocampus - metabolism
Humans
Male
Memory
Mice
Mice, Inbred C57BL
Mice, Knockout
mutation
Nerve Net - metabolism
postpartum period
proteins
ras GTPase-Activating Proteins - genetics
ras GTPase-Activating Proteins - metabolism
synapse
Synapses - metabolism
title Pathogenic SYNGAP1 Mutations Impair Cognitive Development by Disrupting Maturation of Dendritic Spine Synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathogenic%20SYNGAP1%20Mutations%20Impair%20Cognitive%20Development%20by%20Disrupting%20Maturation%20of%20Dendritic%20Spine%20Synapses&rft.jtitle=Cell&rft.au=Clement,%20James%C2%A0P.&rft.date=2012-11-09&rft.volume=151&rft.issue=4&rft.spage=709&rft.epage=723&rft.pages=709-723&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.08.045&rft_dat=%3Cproquest_pubme%3E1419364028%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151700774&rft_id=info:pmid/23141534&rft_els_id=S0092867412012408&rfr_iscdi=true