Role of PGC-1α signaling in skeletal muscle health and disease

This paper reviews the current understanding of the molecular basis of the peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α)–mediated pathway and discusses the role of PGC‐1α in skeletal muscle atrophy caused by immobilization. PGC‐1α is the master transcription regulator that sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2012-10, Vol.1271 (1), p.110-117
Hauptverfasser: Kang, Chounghun, Li Ji, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 110
container_title Annals of the New York Academy of Sciences
container_volume 1271
creator Kang, Chounghun
Li Ji, Li
description This paper reviews the current understanding of the molecular basis of the peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α)–mediated pathway and discusses the role of PGC‐1α in skeletal muscle atrophy caused by immobilization. PGC‐1α is the master transcription regulator that stimulates mitochondrial biogenesis, by upregulating nuclear respiratory factors (NRF‐1, 2) and mitochondrial transcription factor A (Tfam), which leads to increased mitochondrial DNA replication and gene transcription. PGC‐1α also regulates cellular oxidant–antioxidant homeostasis by stimulating the gene expression of superoxide dismutase‐2 (SOD2), catalase, glutathione peroxidase 1 (GPx1), and uncoupling protein (UCP). Recent reports from muscle‐specific PGC‐1α overexpression underline the importance of PGC‐1α in atrophied skeletal muscle, demonstrate enhancement of the PGC‐1α mitochondrial biogenic pathway, and reduced oxidative damage. Thus, PGC‐1α appears to play a protective role against atrophy‐linked skeletal muscle deterioration.
doi_str_mv 10.1111/j.1749-6632.2012.06738.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800502343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5798-d0e077293cc575ad08cbf8eb6ed54dc55c26e271c7d250b2c10fd5d9837e193c3</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhS0EoqHwCshLNjP1z3hsb0BVRFNo1VYFhFhZjn0ncerMlPGkpI_Fi_BMOE0bYFXuxrbOd4-u70EIU1LSXAeLkspKF3XNWckIZSWpJVfl-gka7YSnaESIlIXSjO-hFyktSCZVJZ-jPcaJIFqyEXp32UXAXYMvJuOC_vqJU5i1NoZ2hkOL0xVEGGzEy1VymZuDjcMc29ZjHxLYBC_Rs8bGBK_uz3305ej95_FxcXo--TA-PC2ckFoVnkCehWnu8ltYT5SbNgqmNXhReSeEYzUwSZ30TJApc5Q0XnituASau_g-erv1vV5Nl-AdtENvo7nuw9L2t6azwfyrtGFuZt2N4ZXWtVDZ4M29Qd99X0EazDIkBzHaFrpVMlSRvBPGK_44KhURtFJUPo7mUqIWWmRUbVHXdyn10OyGp-SOMwuzCc9swjObVM1dqmadW1___fld40OMf7bzI0S4_W9jc_bt8NPmmg2KrUFIA6x3Bra_MlmXwnw9m5hLdXLBTz7WRvDfTrS_fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111856595</pqid></control><display><type>article</type><title>Role of PGC-1α signaling in skeletal muscle health and disease</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Kang, Chounghun ; Li Ji, Li</creator><creatorcontrib>Kang, Chounghun ; Li Ji, Li</creatorcontrib><description>This paper reviews the current understanding of the molecular basis of the peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α)–mediated pathway and discusses the role of PGC‐1α in skeletal muscle atrophy caused by immobilization. PGC‐1α is the master transcription regulator that stimulates mitochondrial biogenesis, by upregulating nuclear respiratory factors (NRF‐1, 2) and mitochondrial transcription factor A (Tfam), which leads to increased mitochondrial DNA replication and gene transcription. PGC‐1α also regulates cellular oxidant–antioxidant homeostasis by stimulating the gene expression of superoxide dismutase‐2 (SOD2), catalase, glutathione peroxidase 1 (GPx1), and uncoupling protein (UCP). Recent reports from muscle‐specific PGC‐1α overexpression underline the importance of PGC‐1α in atrophied skeletal muscle, demonstrate enhancement of the PGC‐1α mitochondrial biogenic pathway, and reduced oxidative damage. Thus, PGC‐1α appears to play a protective role against atrophy‐linked skeletal muscle deterioration.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2012.06738.x</identifier><identifier>PMID: 23050972</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Aging - metabolism ; Animals ; Atrophy ; Catalase ; Cellular ; Exercise ; Gene expression ; Gene Expression Regulation, Enzymologic ; Heat-Shock Proteins - biosynthesis ; Heat-Shock Proteins - metabolism ; Homeostasis ; Humans ; inflammation ; mitochondria ; Mitochondrial Turnover ; muscle atrophy ; Muscle, Skeletal - immunology ; Muscle, Skeletal - metabolism ; Muscles ; Muscular Atrophy - metabolism ; Musculoskeletal Diseases - immunology ; Musculoskeletal Diseases - metabolism ; Original ; Oxidoreductases - biosynthesis ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Pathways ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; PGC-1 ; Protective ; Signal Transduction ; Transcription Factors - biosynthesis ; Transcription Factors - metabolism</subject><ispartof>Annals of the New York Academy of Sciences, 2012-10, Vol.1271 (1), p.110-117</ispartof><rights>2012 New York Academy of Sciences.</rights><rights>2012 New York Academy of Sciences. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5798-d0e077293cc575ad08cbf8eb6ed54dc55c26e271c7d250b2c10fd5d9837e193c3</citedby><cites>FETCH-LOGICAL-c5798-d0e077293cc575ad08cbf8eb6ed54dc55c26e271c7d250b2c10fd5d9837e193c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2012.06738.x$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2012.06738.x$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23050972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Chounghun</creatorcontrib><creatorcontrib>Li Ji, Li</creatorcontrib><title>Role of PGC-1α signaling in skeletal muscle health and disease</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>This paper reviews the current understanding of the molecular basis of the peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α)–mediated pathway and discusses the role of PGC‐1α in skeletal muscle atrophy caused by immobilization. PGC‐1α is the master transcription regulator that stimulates mitochondrial biogenesis, by upregulating nuclear respiratory factors (NRF‐1, 2) and mitochondrial transcription factor A (Tfam), which leads to increased mitochondrial DNA replication and gene transcription. PGC‐1α also regulates cellular oxidant–antioxidant homeostasis by stimulating the gene expression of superoxide dismutase‐2 (SOD2), catalase, glutathione peroxidase 1 (GPx1), and uncoupling protein (UCP). Recent reports from muscle‐specific PGC‐1α overexpression underline the importance of PGC‐1α in atrophied skeletal muscle, demonstrate enhancement of the PGC‐1α mitochondrial biogenic pathway, and reduced oxidative damage. Thus, PGC‐1α appears to play a protective role against atrophy‐linked skeletal muscle deterioration.</description><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Catalase</subject><subject>Cellular</subject><subject>Exercise</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Heat-Shock Proteins - biosynthesis</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>inflammation</subject><subject>mitochondria</subject><subject>Mitochondrial Turnover</subject><subject>muscle atrophy</subject><subject>Muscle, Skeletal - immunology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular Atrophy - metabolism</subject><subject>Musculoskeletal Diseases - immunology</subject><subject>Musculoskeletal Diseases - metabolism</subject><subject>Original</subject><subject>Oxidoreductases - biosynthesis</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Pathways</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>PGC-1</subject><subject>Protective</subject><subject>Signal Transduction</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - metabolism</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1uEzEUhS0EoqHwCshLNjP1z3hsb0BVRFNo1VYFhFhZjn0ncerMlPGkpI_Fi_BMOE0bYFXuxrbOd4-u70EIU1LSXAeLkspKF3XNWckIZSWpJVfl-gka7YSnaESIlIXSjO-hFyktSCZVJZ-jPcaJIFqyEXp32UXAXYMvJuOC_vqJU5i1NoZ2hkOL0xVEGGzEy1VymZuDjcMc29ZjHxLYBC_Rs8bGBK_uz3305ej95_FxcXo--TA-PC2ckFoVnkCehWnu8ltYT5SbNgqmNXhReSeEYzUwSZ30TJApc5Q0XnituASau_g-erv1vV5Nl-AdtENvo7nuw9L2t6azwfyrtGFuZt2N4ZXWtVDZ4M29Qd99X0EazDIkBzHaFrpVMlSRvBPGK_44KhURtFJUPo7mUqIWWmRUbVHXdyn10OyGp-SOMwuzCc9swjObVM1dqmadW1___fld40OMf7bzI0S4_W9jc_bt8NPmmg2KrUFIA6x3Bra_MlmXwnw9m5hLdXLBTz7WRvDfTrS_fw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kang, Chounghun</creator><creator>Li Ji, Li</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201210</creationdate><title>Role of PGC-1α signaling in skeletal muscle health and disease</title><author>Kang, Chounghun ; Li Ji, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5798-d0e077293cc575ad08cbf8eb6ed54dc55c26e271c7d250b2c10fd5d9837e193c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Catalase</topic><topic>Cellular</topic><topic>Exercise</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Heat-Shock Proteins - biosynthesis</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>inflammation</topic><topic>mitochondria</topic><topic>Mitochondrial Turnover</topic><topic>muscle atrophy</topic><topic>Muscle, Skeletal - immunology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular Atrophy - metabolism</topic><topic>Musculoskeletal Diseases - immunology</topic><topic>Musculoskeletal Diseases - metabolism</topic><topic>Original</topic><topic>Oxidoreductases - biosynthesis</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Pathways</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>PGC-1</topic><topic>Protective</topic><topic>Signal Transduction</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chounghun</creatorcontrib><creatorcontrib>Li Ji, Li</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Chounghun</au><au>Li Ji, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of PGC-1α signaling in skeletal muscle health and disease</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2012-10</date><risdate>2012</risdate><volume>1271</volume><issue>1</issue><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>This paper reviews the current understanding of the molecular basis of the peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α)–mediated pathway and discusses the role of PGC‐1α in skeletal muscle atrophy caused by immobilization. PGC‐1α is the master transcription regulator that stimulates mitochondrial biogenesis, by upregulating nuclear respiratory factors (NRF‐1, 2) and mitochondrial transcription factor A (Tfam), which leads to increased mitochondrial DNA replication and gene transcription. PGC‐1α also regulates cellular oxidant–antioxidant homeostasis by stimulating the gene expression of superoxide dismutase‐2 (SOD2), catalase, glutathione peroxidase 1 (GPx1), and uncoupling protein (UCP). Recent reports from muscle‐specific PGC‐1α overexpression underline the importance of PGC‐1α in atrophied skeletal muscle, demonstrate enhancement of the PGC‐1α mitochondrial biogenic pathway, and reduced oxidative damage. Thus, PGC‐1α appears to play a protective role against atrophy‐linked skeletal muscle deterioration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>23050972</pmid><doi>10.1111/j.1749-6632.2012.06738.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2012-10, Vol.1271 (1), p.110-117
issn 0077-8923
1749-6632
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499658
source MEDLINE; Wiley Online Library Journals
subjects Aging - metabolism
Animals
Atrophy
Catalase
Cellular
Exercise
Gene expression
Gene Expression Regulation, Enzymologic
Heat-Shock Proteins - biosynthesis
Heat-Shock Proteins - metabolism
Homeostasis
Humans
inflammation
mitochondria
Mitochondrial Turnover
muscle atrophy
Muscle, Skeletal - immunology
Muscle, Skeletal - metabolism
Muscles
Muscular Atrophy - metabolism
Musculoskeletal Diseases - immunology
Musculoskeletal Diseases - metabolism
Original
Oxidoreductases - biosynthesis
Oxidoreductases - genetics
Oxidoreductases - metabolism
Pathways
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
PGC-1
Protective
Signal Transduction
Transcription Factors - biosynthesis
Transcription Factors - metabolism
title Role of PGC-1α signaling in skeletal muscle health and disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20PGC-1%CE%B1%20signaling%20in%20skeletal%20muscle%20health%20and%20disease&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Kang,%20Chounghun&rft.date=2012-10&rft.volume=1271&rft.issue=1&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2012.06738.x&rft_dat=%3Cproquest_pubme%3E1800502343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111856595&rft_id=info:pmid/23050972&rfr_iscdi=true