Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector

Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2012-10 (68)
Hauptverfasser: Sommer, Andreia Gianotti, Rozelle, Sarah S., Sullivan, Spencer, Mills, Jason A., Park, Seon-Mi, Smith, Brenden W., Iyer, Amulya M., French, Deborah L., Kotton, Darrell N., Gadue, Paul, Murphy, George J., Mostoslavsky, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 68
container_start_page
container_title Journal of Visualized Experiments
container_volume
creator Sommer, Andreia Gianotti
Rozelle, Sarah S.
Sullivan, Spencer
Mills, Jason A.
Park, Seon-Mi
Smith, Brenden W.
Iyer, Amulya M.
French, Deborah L.
Kotton, Darrell N.
Gadue, Paul
Murphy, George J.
Mostoslavsky, Gustavo
description Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies5. We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors6. These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs7-9. In one study, a Tet inducible version of the STEMCCA vector was employed9, which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described10,11 in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers
doi_str_mv 10.3791/4327
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1171859137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d719a13675c3d93d00e47f9d98dfa64734a515dde9adf4bee174733eedfef81f3</originalsourceid><addsrcrecordid>eNpVkUtPAyEUhYnR-Kj-ADeGhQs3VSgzZdiY6ERtkxpNfMQdocOlpZmBCjNN_PfSVBtdQbjfOfdwL0LHlFwyLuhVxgZ8Bx1SkZE-KfjH7p_7ATqKcUHIcEDyYh8dDBjNhOD8ENUP4CCo1nqHvcGjrlEOj53uKtD4ue6CXfoWXItfWmhwCXUdsQm-wc-QSvMkrfFt7b3Gb9G6GW7ngF9e7x7L8gZPks6u7Bp5h6r14RjtGVVHOPk5e-jt_u61HPUnTw_j8mbSrxgv2r7mVCjKhjyvmBZMEwIZN0KLQhs1zDjLVE5zrUEobbIpAOXpkQFoA6aghvXQ9cZ32U0b0FXKkULIZbCNCl_SKyv_V5ydy5lfSZamQjhJBhc_BsF_dhBb2dhYpc8rB76LklJOi1xQxhN6vkGr4GMMYLZtKJHrxcj1YhJ29jfSFvrdRAJON8DCr0AufBdcGtFG_A1o9pJr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171859137</pqid></control><display><type>article</type><title>Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector</title><source>Journal of Visualized Experiments : JoVE</source><creator>Sommer, Andreia Gianotti ; Rozelle, Sarah S. ; Sullivan, Spencer ; Mills, Jason A. ; Park, Seon-Mi ; Smith, Brenden W. ; Iyer, Amulya M. ; French, Deborah L. ; Kotton, Darrell N. ; Gadue, Paul ; Murphy, George J. ; Mostoslavsky, Gustavo</creator><creatorcontrib>Sommer, Andreia Gianotti ; Rozelle, Sarah S. ; Sullivan, Spencer ; Mills, Jason A. ; Park, Seon-Mi ; Smith, Brenden W. ; Iyer, Amulya M. ; French, Deborah L. ; Kotton, Darrell N. ; Gadue, Paul ; Murphy, George J. ; Mostoslavsky, Gustavo</creatorcontrib><description>Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies5. We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors6. These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs7-9. In one study, a Tet inducible version of the STEMCCA vector was employed9, which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described10,11 in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/4327</identifier><identifier>PMID: 23149977</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Antigens, Surface - biosynthesis ; Genetic Vectors - genetics ; Humans ; Lentivirus - genetics ; Leukocytes, Mononuclear - cytology ; Leukocytes, Mononuclear - metabolism ; Leukocytes, Mononuclear - physiology ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Pluripotent Stem Cells - physiology ; Proteoglycans - biosynthesis ; Stage-Specific Embryonic Antigens - biosynthesis ; Stem Cell Biology ; Transduction, Genetic</subject><ispartof>Journal of Visualized Experiments, 2012-10 (68)</ispartof><rights>Copyright © 2012, Journal of Visualized Experiments</rights><rights>Copyright © 2012, Journal of Visualized Experiments 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d719a13675c3d93d00e47f9d98dfa64734a515dde9adf4bee174733eedfef81f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/4327.png</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499070/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499070/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3830,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/4327$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23149977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommer, Andreia Gianotti</creatorcontrib><creatorcontrib>Rozelle, Sarah S.</creatorcontrib><creatorcontrib>Sullivan, Spencer</creatorcontrib><creatorcontrib>Mills, Jason A.</creatorcontrib><creatorcontrib>Park, Seon-Mi</creatorcontrib><creatorcontrib>Smith, Brenden W.</creatorcontrib><creatorcontrib>Iyer, Amulya M.</creatorcontrib><creatorcontrib>French, Deborah L.</creatorcontrib><creatorcontrib>Kotton, Darrell N.</creatorcontrib><creatorcontrib>Gadue, Paul</creatorcontrib><creatorcontrib>Murphy, George J.</creatorcontrib><creatorcontrib>Mostoslavsky, Gustavo</creatorcontrib><title>Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies5. We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors6. These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs7-9. In one study, a Tet inducible version of the STEMCCA vector was employed9, which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described10,11 in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.</description><subject>Antigens, Surface - biosynthesis</subject><subject>Genetic Vectors - genetics</subject><subject>Humans</subject><subject>Lentivirus - genetics</subject><subject>Leukocytes, Mononuclear - cytology</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Leukocytes, Mononuclear - physiology</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>Proteoglycans - biosynthesis</subject><subject>Stage-Specific Embryonic Antigens - biosynthesis</subject><subject>Stem Cell Biology</subject><subject>Transduction, Genetic</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtPAyEUhYnR-Kj-ADeGhQs3VSgzZdiY6ERtkxpNfMQdocOlpZmBCjNN_PfSVBtdQbjfOfdwL0LHlFwyLuhVxgZ8Bx1SkZE-KfjH7p_7ATqKcUHIcEDyYh8dDBjNhOD8ENUP4CCo1nqHvcGjrlEOj53uKtD4ue6CXfoWXItfWmhwCXUdsQm-wc-QSvMkrfFt7b3Gb9G6GW7ngF9e7x7L8gZPks6u7Bp5h6r14RjtGVVHOPk5e-jt_u61HPUnTw_j8mbSrxgv2r7mVCjKhjyvmBZMEwIZN0KLQhs1zDjLVE5zrUEobbIpAOXpkQFoA6aghvXQ9cZ32U0b0FXKkULIZbCNCl_SKyv_V5ydy5lfSZamQjhJBhc_BsF_dhBb2dhYpc8rB76LklJOi1xQxhN6vkGr4GMMYLZtKJHrxcj1YhJ29jfSFvrdRAJON8DCr0AufBdcGtFG_A1o9pJr</recordid><startdate>20121031</startdate><enddate>20121031</enddate><creator>Sommer, Andreia Gianotti</creator><creator>Rozelle, Sarah S.</creator><creator>Sullivan, Spencer</creator><creator>Mills, Jason A.</creator><creator>Park, Seon-Mi</creator><creator>Smith, Brenden W.</creator><creator>Iyer, Amulya M.</creator><creator>French, Deborah L.</creator><creator>Kotton, Darrell N.</creator><creator>Gadue, Paul</creator><creator>Murphy, George J.</creator><creator>Mostoslavsky, Gustavo</creator><general>MyJove Corporation</general><scope>ALOKQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121031</creationdate><title>Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector</title><author>Sommer, Andreia Gianotti ; Rozelle, Sarah S. ; Sullivan, Spencer ; Mills, Jason A. ; Park, Seon-Mi ; Smith, Brenden W. ; Iyer, Amulya M. ; French, Deborah L. ; Kotton, Darrell N. ; Gadue, Paul ; Murphy, George J. ; Mostoslavsky, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d719a13675c3d93d00e47f9d98dfa64734a515dde9adf4bee174733eedfef81f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antigens, Surface - biosynthesis</topic><topic>Genetic Vectors - genetics</topic><topic>Humans</topic><topic>Lentivirus - genetics</topic><topic>Leukocytes, Mononuclear - cytology</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Leukocytes, Mononuclear - physiology</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>Proteoglycans - biosynthesis</topic><topic>Stage-Specific Embryonic Antigens - biosynthesis</topic><topic>Stem Cell Biology</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommer, Andreia Gianotti</creatorcontrib><creatorcontrib>Rozelle, Sarah S.</creatorcontrib><creatorcontrib>Sullivan, Spencer</creatorcontrib><creatorcontrib>Mills, Jason A.</creatorcontrib><creatorcontrib>Park, Seon-Mi</creatorcontrib><creatorcontrib>Smith, Brenden W.</creatorcontrib><creatorcontrib>Iyer, Amulya M.</creatorcontrib><creatorcontrib>French, Deborah L.</creatorcontrib><creatorcontrib>Kotton, Darrell N.</creatorcontrib><creatorcontrib>Gadue, Paul</creatorcontrib><creatorcontrib>Murphy, George J.</creatorcontrib><creatorcontrib>Mostoslavsky, Gustavo</creatorcontrib><collection>JoVE Journal: Biology</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sommer, Andreia Gianotti</au><au>Rozelle, Sarah S.</au><au>Sullivan, Spencer</au><au>Mills, Jason A.</au><au>Park, Seon-Mi</au><au>Smith, Brenden W.</au><au>Iyer, Amulya M.</au><au>French, Deborah L.</au><au>Kotton, Darrell N.</au><au>Gadue, Paul</au><au>Murphy, George J.</au><au>Mostoslavsky, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2012-10-31</date><risdate>2012</risdate><issue>68</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)1-4. Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies5. We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors6. These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs7-9. In one study, a Tet inducible version of the STEMCCA vector was employed9, which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described10,11 in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>23149977</pmid><doi>10.3791/4327</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of Visualized Experiments, 2012-10 (68)
issn 1940-087X
1940-087X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499070
source Journal of Visualized Experiments : JoVE
subjects Antigens, Surface - biosynthesis
Genetic Vectors - genetics
Humans
Lentivirus - genetics
Leukocytes, Mononuclear - cytology
Leukocytes, Mononuclear - metabolism
Leukocytes, Mononuclear - physiology
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Pluripotent Stem Cells - physiology
Proteoglycans - biosynthesis
Stage-Specific Embryonic Antigens - biosynthesis
Stem Cell Biology
Transduction, Genetic
title Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Human%20Induced%20Pluripotent%20Stem%20Cells%20from%20Peripheral%20Blood%20Using%20the%20STEMCCA%20Lentiviral%20Vector&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Sommer,%20Andreia%20Gianotti&rft.date=2012-10-31&rft.issue=68&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/4327&rft_dat=%3Cproquest_223%3E1171859137%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171859137&rft_id=info:pmid/23149977&rfr_iscdi=true