The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)

Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2012-12, Vol.279 (1748), p.4795-4802
Hauptverfasser: Uchiyama, Minoru, Maejima, Sho, Yoshie, Sumio, Kubo, Yoshihiro, Konno, Norifumi, Joss, Jean M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4802
container_issue 1748
container_start_page 4795
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 279
creator Uchiyama, Minoru
Maejima, Sho
Yoshie, Sumio
Kubo, Yoshihiro
Konno, Norifumi
Joss, Jean M. P.
description Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.
doi_str_mv 10.1098/rspb.2012.1945
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3497098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41727536</jstor_id><sourcerecordid>41727536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-bff641a8ee285b1ecbc0c7f904115f68cd7e2019f52778b0bbd7c12efbe8fca83</originalsourceid><addsrcrecordid>eNqNUsFu1DAUjBCILoUrN5CPRSKL7dix0wNSKRQQqxbRgnqzHO9z4202DnZSsXw9XnZZUSEQp2drxm_mvXGWPSZ4SnAlX4TY11OKCZ2SivE72YQwQXKaznezCa5KmkvG6V72IMYFxrjikt_P9miBOcclm2T2ogEEvRsaaJ1uUfRzNy6RaXTXQYtchxKCjsY4BJ0IHWrH7sq62DxHp-ANBD34-RiR9SEOEBw6OEvVmWZoVhAP0WvXd949e5jds7qN8Ghb97PPJ28ujt_ls7O374-PZrkpq2LIa2tLRrQEoJLXBExtsBG2wowQbktp5gLSsJXlVAhZ47qeC0Mo2BqkNVoW-9nLTd9-rJcwN9Ctfas-uKUOK-W1U7eRzjXqyt-oglUi7TM1ONg2CP7rCHFQSxcNtK3uwI9REUGSNKbsP6hUFMl2WnOiTjdUE3yMAezOEcFqnaNa56jWOap1junB09_n2NF_BZcI1xtC8Ku0UG8cDCu18GPo0lV9Ov_46oaKyhHBpMKyIFhQQaX67vqtlqiUi3EE9ZNyW_9PO8W_1P46xJPNq0UcfNjNwEiywosy4fkGd-nLfNvhOlyrUhSCqy-SqUt2PjuVHy7VSfEDG0DpWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273115064</pqid></control><display><type>article</type><title>The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Uchiyama, Minoru ; Maejima, Sho ; Yoshie, Sumio ; Kubo, Yoshihiro ; Konno, Norifumi ; Joss, Jean M. P.</creator><creatorcontrib>Uchiyama, Minoru ; Maejima, Sho ; Yoshie, Sumio ; Kubo, Yoshihiro ; Konno, Norifumi ; Joss, Jean M. P.</creatorcontrib><description>Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2945</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2012.1945</identifier><identifier>PMID: 23055064</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Amino Acid Sequence ; Animals ; Australia ; Cell membranes ; Cloning, Molecular ; Dipnoi ; Electric current ; Electrophysiological Phenomena ; Epithelial cells ; Epithelial Sodium Channels - genetics ; Epithelial Sodium Channels - metabolism ; Evolution Of Ion Channel ; Female ; Fishes - physiology ; Gene Expression Regulation ; Gills ; Gills - metabolism ; Immunoreactivity ; Kidney - metabolism ; Kidneys ; Messenger RNA ; Metazoa ; Molecular Sequence Data ; Neoceratodus ; Neoceratodus forsteri ; Nephrons ; Oocyte ; Oocytes ; Oocytes - physiology ; Osteichthyes ; Phylogeny ; Protein Subunits ; Rectum ; Rectum - metabolism ; Renin-Angiotensin System - physiology ; Sodium channels ; Sodium Transport ; Teleostei ; Xenopus ; Xenopus oocyte</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2012-12, Vol.279 (1748), p.4795-4802</ispartof><rights>Copyright © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-bff641a8ee285b1ecbc0c7f904115f68cd7e2019f52778b0bbd7c12efbe8fca83</citedby><cites>FETCH-LOGICAL-c693t-bff641a8ee285b1ecbc0c7f904115f68cd7e2019f52778b0bbd7c12efbe8fca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41727536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41727536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23055064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchiyama, Minoru</creatorcontrib><creatorcontrib>Maejima, Sho</creatorcontrib><creatorcontrib>Yoshie, Sumio</creatorcontrib><creatorcontrib>Kubo, Yoshihiro</creatorcontrib><creatorcontrib>Konno, Norifumi</creatorcontrib><creatorcontrib>Joss, Jean M. P.</creatorcontrib><title>The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Australia</subject><subject>Cell membranes</subject><subject>Cloning, Molecular</subject><subject>Dipnoi</subject><subject>Electric current</subject><subject>Electrophysiological Phenomena</subject><subject>Epithelial cells</subject><subject>Epithelial Sodium Channels - genetics</subject><subject>Epithelial Sodium Channels - metabolism</subject><subject>Evolution Of Ion Channel</subject><subject>Female</subject><subject>Fishes - physiology</subject><subject>Gene Expression Regulation</subject><subject>Gills</subject><subject>Gills - metabolism</subject><subject>Immunoreactivity</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Messenger RNA</subject><subject>Metazoa</subject><subject>Molecular Sequence Data</subject><subject>Neoceratodus</subject><subject>Neoceratodus forsteri</subject><subject>Nephrons</subject><subject>Oocyte</subject><subject>Oocytes</subject><subject>Oocytes - physiology</subject><subject>Osteichthyes</subject><subject>Phylogeny</subject><subject>Protein Subunits</subject><subject>Rectum</subject><subject>Rectum - metabolism</subject><subject>Renin-Angiotensin System - physiology</subject><subject>Sodium channels</subject><subject>Sodium Transport</subject><subject>Teleostei</subject><subject>Xenopus</subject><subject>Xenopus oocyte</subject><issn>0962-8452</issn><issn>1471-2945</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsFu1DAUjBCILoUrN5CPRSKL7dix0wNSKRQQqxbRgnqzHO9z4202DnZSsXw9XnZZUSEQp2drxm_mvXGWPSZ4SnAlX4TY11OKCZ2SivE72YQwQXKaznezCa5KmkvG6V72IMYFxrjikt_P9miBOcclm2T2ogEEvRsaaJ1uUfRzNy6RaXTXQYtchxKCjsY4BJ0IHWrH7sq62DxHp-ANBD34-RiR9SEOEBw6OEvVmWZoVhAP0WvXd949e5jds7qN8Ghb97PPJ28ujt_ls7O374-PZrkpq2LIa2tLRrQEoJLXBExtsBG2wowQbktp5gLSsJXlVAhZ47qeC0Mo2BqkNVoW-9nLTd9-rJcwN9Ctfas-uKUOK-W1U7eRzjXqyt-oglUi7TM1ONg2CP7rCHFQSxcNtK3uwI9REUGSNKbsP6hUFMl2WnOiTjdUE3yMAezOEcFqnaNa56jWOap1junB09_n2NF_BZcI1xtC8Ku0UG8cDCu18GPo0lV9Ov_46oaKyhHBpMKyIFhQQaX67vqtlqiUi3EE9ZNyW_9PO8W_1P46xJPNq0UcfNjNwEiywosy4fkGd-nLfNvhOlyrUhSCqy-SqUt2PjuVHy7VSfEDG0DpWg</recordid><startdate>20121207</startdate><enddate>20121207</enddate><creator>Uchiyama, Minoru</creator><creator>Maejima, Sho</creator><creator>Yoshie, Sumio</creator><creator>Kubo, Yoshihiro</creator><creator>Konno, Norifumi</creator><creator>Joss, Jean M. P.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20121207</creationdate><title>The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)</title><author>Uchiyama, Minoru ; Maejima, Sho ; Yoshie, Sumio ; Kubo, Yoshihiro ; Konno, Norifumi ; Joss, Jean M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-bff641a8ee285b1ecbc0c7f904115f68cd7e2019f52778b0bbd7c12efbe8fca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Australia</topic><topic>Cell membranes</topic><topic>Cloning, Molecular</topic><topic>Dipnoi</topic><topic>Electric current</topic><topic>Electrophysiological Phenomena</topic><topic>Epithelial cells</topic><topic>Epithelial Sodium Channels - genetics</topic><topic>Epithelial Sodium Channels - metabolism</topic><topic>Evolution Of Ion Channel</topic><topic>Female</topic><topic>Fishes - physiology</topic><topic>Gene Expression Regulation</topic><topic>Gills</topic><topic>Gills - metabolism</topic><topic>Immunoreactivity</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Messenger RNA</topic><topic>Metazoa</topic><topic>Molecular Sequence Data</topic><topic>Neoceratodus</topic><topic>Neoceratodus forsteri</topic><topic>Nephrons</topic><topic>Oocyte</topic><topic>Oocytes</topic><topic>Oocytes - physiology</topic><topic>Osteichthyes</topic><topic>Phylogeny</topic><topic>Protein Subunits</topic><topic>Rectum</topic><topic>Rectum - metabolism</topic><topic>Renin-Angiotensin System - physiology</topic><topic>Sodium channels</topic><topic>Sodium Transport</topic><topic>Teleostei</topic><topic>Xenopus</topic><topic>Xenopus oocyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Minoru</creatorcontrib><creatorcontrib>Maejima, Sho</creatorcontrib><creatorcontrib>Yoshie, Sumio</creatorcontrib><creatorcontrib>Kubo, Yoshihiro</creatorcontrib><creatorcontrib>Konno, Norifumi</creatorcontrib><creatorcontrib>Joss, Jean M. P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Minoru</au><au>Maejima, Sho</au><au>Yoshie, Sumio</au><au>Kubo, Yoshihiro</au><au>Konno, Norifumi</au><au>Joss, Jean M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2012-12-07</date><risdate>2012</risdate><volume>279</volume><issue>1748</issue><spage>4795</spage><epage>4802</epage><pages>4795-4802</pages><issn>0962-8452</issn><eissn>1471-2945</eissn><eissn>1471-2954</eissn><abstract>Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>23055064</pmid><doi>10.1098/rspb.2012.1945</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2012-12, Vol.279 (1748), p.4795-4802
issn 0962-8452
1471-2945
1471-2954
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3497098
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Amino Acid Sequence
Animals
Australia
Cell membranes
Cloning, Molecular
Dipnoi
Electric current
Electrophysiological Phenomena
Epithelial cells
Epithelial Sodium Channels - genetics
Epithelial Sodium Channels - metabolism
Evolution Of Ion Channel
Female
Fishes - physiology
Gene Expression Regulation
Gills
Gills - metabolism
Immunoreactivity
Kidney - metabolism
Kidneys
Messenger RNA
Metazoa
Molecular Sequence Data
Neoceratodus
Neoceratodus forsteri
Nephrons
Oocyte
Oocytes
Oocytes - physiology
Osteichthyes
Phylogeny
Protein Subunits
Rectum
Rectum - metabolism
Renin-Angiotensin System - physiology
Sodium channels
Sodium Transport
Teleostei
Xenopus
Xenopus oocyte
title The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20epithelial%20sodium%20channel%20in%20the%20Australian%20lungfish,%20Neoceratodus%20forsteri%20(Osteichthyes:%20Dipnoi)&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Uchiyama,%20Minoru&rft.date=2012-12-07&rft.volume=279&rft.issue=1748&rft.spage=4795&rft.epage=4802&rft.pages=4795-4802&rft.issn=0962-8452&rft.eissn=1471-2945&rft_id=info:doi/10.1098/rspb.2012.1945&rft_dat=%3Cjstor_pubme%3E41727536%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273115064&rft_id=info:pmid/23055064&rft_jstor_id=41727536&rfr_iscdi=true