Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation
Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of...
Gespeichert in:
Veröffentlicht in: | Nano letters 2012-07, Vol.12 (7), p.3369-3377 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3377 |
---|---|
container_issue | 7 |
container_start_page | 3369 |
container_title | Nano letters |
container_volume | 12 |
creator | Smith, Bryan Ronain Kempen, Paul Bouley, Donna Xu, Alexander Liu, Zhuang Melosh, Nicholas Dai, Hongjie Sinclair, Robert Gambhir, Sanjiv Sam |
description | Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous. |
doi_str_mv | 10.1021/nl204175t |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3495189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053718</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-5b103abbcca3ddedc6056ddfcf9d54eb6630981fda544db6aa3dba53d6f997d53</originalsourceid><addsrcrecordid>eNptkUtv1DAUhSNERUthwR9A3iDBYqgdP2bCAgmVUip1QKJlbd3YN62rxA62M6JL_jmOOkyp1JUt-zvnPk5VvWL0PaM1O_J9TQVbyvykOmCS04Vqmvrp7r4S-9XzlG4opQ2X9Fm1X9dKzoqD6s_FNYxI1pAzxvSBnPkcYeMy9GTtTAzJhPGW_MANQp_IxRTH6JLzV-QUw4A5OlPIzziit-gNki5E8g18GCFmZ3pMxHlyOQ3leR0sFo_QkZPfcxFIkF3wL6q9rnjjy-15WP38cnJ5_HVx_v307PjT-QIkF3khW0Y5tK0xwK1FaxSVytrOdI2VAlulOG1WrLMghbCtgoK1RWpV1zRLK_lh9fHOd5zaoehxnrTXZZ4B4q0O4PTDH--u9VXYaC4ayVZNMXi7NYjh14Qp68Elg30PHsOUNFuqmkq-ZKuCvrtD5w2miN2uDKN6jkzvIivs6__72pH_MirAmy0AqWy7i-CNS_ecYkIowe85MEnfhCn6ss5HCv4F3a6vlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053718</pqid></control><display><type>article</type><title>Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Smith, Bryan Ronain ; Kempen, Paul ; Bouley, Donna ; Xu, Alexander ; Liu, Zhuang ; Melosh, Nicholas ; Dai, Hongjie ; Sinclair, Robert ; Gambhir, Sanjiv Sam</creator><creatorcontrib>Smith, Bryan Ronain ; Kempen, Paul ; Bouley, Donna ; Xu, Alexander ; Liu, Zhuang ; Melosh, Nicholas ; Dai, Hongjie ; Sinclair, Robert ; Gambhir, Sanjiv Sam</creatorcontrib><description>Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl204175t</identifier><identifier>PMID: 22650417</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Charge ; Coatings ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Disease Models, Animal ; Ear Neoplasms - blood supply ; Ear Neoplasms - pathology ; Exact sciences and technology ; Humans ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Mice ; Microscopy ; Microscopy, Fluorescence ; Nanocrystalline materials ; Nanoparticles ; Nanoparticles - chemistry ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon - chemistry ; Neoplasms, Experimental - blood supply ; Neoplasms, Experimental - pathology ; Particle Size ; Physics ; Quantum Dots ; Real time ; Single wall carbon nanotubes ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Tasks ; Tumors</subject><ispartof>Nano letters, 2012-07, Vol.12 (7), p.3369-3377</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-5b103abbcca3ddedc6056ddfcf9d54eb6630981fda544db6aa3dba53d6f997d53</citedby><cites>FETCH-LOGICAL-a534t-5b103abbcca3ddedc6056ddfcf9d54eb6630981fda544db6aa3dba53d6f997d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl204175t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl204175t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26144643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22650417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Bryan Ronain</creatorcontrib><creatorcontrib>Kempen, Paul</creatorcontrib><creatorcontrib>Bouley, Donna</creatorcontrib><creatorcontrib>Xu, Alexander</creatorcontrib><creatorcontrib>Liu, Zhuang</creatorcontrib><creatorcontrib>Melosh, Nicholas</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><title>Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.</description><subject>Animals</subject><subject>Charge</subject><subject>Coatings</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Disease Models, Animal</subject><subject>Ear Neoplasms - blood supply</subject><subject>Ear Neoplasms - pathology</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Neoplasms, Experimental - blood supply</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum Dots</subject><subject>Real time</subject><subject>Single wall carbon nanotubes</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Tasks</subject><subject>Tumors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhSNERUthwR9A3iDBYqgdP2bCAgmVUip1QKJlbd3YN62rxA62M6JL_jmOOkyp1JUt-zvnPk5VvWL0PaM1O_J9TQVbyvykOmCS04Vqmvrp7r4S-9XzlG4opQ2X9Fm1X9dKzoqD6s_FNYxI1pAzxvSBnPkcYeMy9GTtTAzJhPGW_MANQp_IxRTH6JLzV-QUw4A5OlPIzziit-gNki5E8g18GCFmZ3pMxHlyOQ3leR0sFo_QkZPfcxFIkF3wL6q9rnjjy-15WP38cnJ5_HVx_v307PjT-QIkF3khW0Y5tK0xwK1FaxSVytrOdI2VAlulOG1WrLMghbCtgoK1RWpV1zRLK_lh9fHOd5zaoehxnrTXZZ4B4q0O4PTDH--u9VXYaC4ayVZNMXi7NYjh14Qp68Elg30PHsOUNFuqmkq-ZKuCvrtD5w2miN2uDKN6jkzvIivs6__72pH_MirAmy0AqWy7i-CNS_ecYkIowe85MEnfhCn6ss5HCv4F3a6vlQ</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Smith, Bryan Ronain</creator><creator>Kempen, Paul</creator><creator>Bouley, Donna</creator><creator>Xu, Alexander</creator><creator>Liu, Zhuang</creator><creator>Melosh, Nicholas</creator><creator>Dai, Hongjie</creator><creator>Sinclair, Robert</creator><creator>Gambhir, Sanjiv Sam</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20120711</creationdate><title>Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation</title><author>Smith, Bryan Ronain ; Kempen, Paul ; Bouley, Donna ; Xu, Alexander ; Liu, Zhuang ; Melosh, Nicholas ; Dai, Hongjie ; Sinclair, Robert ; Gambhir, Sanjiv Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-5b103abbcca3ddedc6056ddfcf9d54eb6630981fda544db6aa3dba53d6f997d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Charge</topic><topic>Coatings</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Disease Models, Animal</topic><topic>Ear Neoplasms - blood supply</topic><topic>Ear Neoplasms - pathology</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Neoplasms, Experimental - blood supply</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum Dots</topic><topic>Real time</topic><topic>Single wall carbon nanotubes</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Tasks</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Bryan Ronain</creatorcontrib><creatorcontrib>Kempen, Paul</creatorcontrib><creatorcontrib>Bouley, Donna</creatorcontrib><creatorcontrib>Xu, Alexander</creatorcontrib><creatorcontrib>Liu, Zhuang</creatorcontrib><creatorcontrib>Melosh, Nicholas</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Bryan Ronain</au><au>Kempen, Paul</au><au>Bouley, Donna</au><au>Xu, Alexander</au><au>Liu, Zhuang</au><au>Melosh, Nicholas</au><au>Dai, Hongjie</au><au>Sinclair, Robert</au><au>Gambhir, Sanjiv Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>12</volume><issue>7</issue><spage>3369</spage><epage>3377</epage><pages>3369-3377</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22650417</pmid><doi>10.1021/nl204175t</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-07, Vol.12 (7), p.3369-3377 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3495189 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Charge Coatings Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Disease Models, Animal Ear Neoplasms - blood supply Ear Neoplasms - pathology Exact sciences and technology Humans Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Mice Microscopy Microscopy, Fluorescence Nanocrystalline materials Nanoparticles Nanoparticles - chemistry Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotechnology Nanotubes Nanotubes, Carbon - chemistry Neoplasms, Experimental - blood supply Neoplasms, Experimental - pathology Particle Size Physics Quantum Dots Real time Single wall carbon nanotubes Surface Properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Tasks Tumors |
title | Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20Matters:%20Intravital%20Microscopy%20Reveals%20Surprising%20Geometrical%20Dependence%20for%20Nanoparticles%20in%20Tumor%20Models%20of%20Extravasation&rft.jtitle=Nano%20letters&rft.au=Smith,%20Bryan%20Ronain&rft.date=2012-07-11&rft.volume=12&rft.issue=7&rft.spage=3369&rft.epage=3377&rft.pages=3369-3377&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl204175t&rft_dat=%3Cproquest_pubme%3E1762053718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762053718&rft_id=info:pmid/22650417&rfr_iscdi=true |