Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice

Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-06, Vol.32 (23), p.8004-8011
Hauptverfasser: William, Christopher M, Andermann, Mark L, Goldey, Glenn J, Roumis, Demetris K, Reid, R Clay, Shatz, Carla J, Albers, Mark W, Frosch, Matthew P, Hyman, Bradley T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8011
container_issue 23
container_start_page 8004
container_title The Journal of neuroscience
container_volume 32
creator William, Christopher M
Andermann, Mark L
Goldey, Glenn J
Roumis, Demetris K
Reid, R Clay
Shatz, Carla J
Albers, Mark W
Frosch, Matthew P
Hyman, Bradley T
description Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.
doi_str_mv 10.1523/JNEUROSCI.5369-11.2012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3493160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551624330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</originalsourceid><addsrcrecordid>eNqNkUtPGzEUha0KVAL0LyDvYDOpn-PMBglFUKhQkXisLY_nOhh57DCeBIVfX0fQqN11daR7zz06Vx9CJ5RMqWT8-89fl0_3dw_zm6nkdVNROmWEsi9oUrZNxQShe2hCmCJVLZQ4QIc5vxBCFKHqKzpgrFaCKTlB3cMmmuXoLV4Gk4v6cYM7cGBH7FII6c3HBV77vDKhzJeDX5vRp4h9xBfh_Rl8D8Npxp3PYDLgPnUQ8DiYmBcQS2zvLRyjfWdChm-feoSeri4f59fV7d2Pm_nFbWWFUGPVEu6Iqk1HZCtbp1xpDlIZbpW1MyvaVgmlmKKOshnvWgBrhJAcnAIh7IwfofOP3OWq7aGzEEuRoEvp3gwbnYzX_26if9aLtNZcNJzWpAScfQYM6XUFedS9zxZCMBHSKmsqJa2Z4Pw_rIQ2NW3kTBRr_WG1Q8p5ALdrRIne0tQ7mnpLU1OqtzTL4cnf_-zO_uDjvwH2JZ9d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019619584</pqid></control><display><type>article</type><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</creator><creatorcontrib>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</creatorcontrib><description>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5369-11.2012</identifier><identifier>PMID: 22674275</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - physiopathology ; Amyloid beta-Protein Precursor - genetics ; Animals ; Eye Enucleation ; Fluorescence ; Humans ; Image Processing, Computer-Assisted ; Immunohistochemistry ; In Situ Hybridization ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuronal Plasticity - physiology ; Neurons - physiology ; Photic Stimulation ; Polymerase Chain Reaction ; Presenilin-1 - genetics ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Sensory Deprivation - physiology ; Synapses - physiology ; Vision, Ocular - physiology ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>The Journal of neuroscience, 2012-06, Vol.32 (23), p.8004-8011</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/328004-08$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493160/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493160/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22674275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>William, Christopher M</creatorcontrib><creatorcontrib>Andermann, Mark L</creatorcontrib><creatorcontrib>Goldey, Glenn J</creatorcontrib><creatorcontrib>Roumis, Demetris K</creatorcontrib><creatorcontrib>Reid, R Clay</creatorcontrib><creatorcontrib>Shatz, Carla J</creatorcontrib><creatorcontrib>Albers, Mark W</creatorcontrib><creatorcontrib>Frosch, Matthew P</creatorcontrib><creatorcontrib>Hyman, Bradley T</creatorcontrib><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Animals</subject><subject>Eye Enucleation</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation</subject><subject>Polymerase Chain Reaction</subject><subject>Presenilin-1 - genetics</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Sensory Deprivation - physiology</subject><subject>Synapses - physiology</subject><subject>Vision, Ocular - physiology</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPGzEUha0KVAL0LyDvYDOpn-PMBglFUKhQkXisLY_nOhh57DCeBIVfX0fQqN11daR7zz06Vx9CJ5RMqWT8-89fl0_3dw_zm6nkdVNROmWEsi9oUrZNxQShe2hCmCJVLZQ4QIc5vxBCFKHqKzpgrFaCKTlB3cMmmuXoLV4Gk4v6cYM7cGBH7FII6c3HBV77vDKhzJeDX5vRp4h9xBfh_Rl8D8Npxp3PYDLgPnUQ8DiYmBcQS2zvLRyjfWdChm-feoSeri4f59fV7d2Pm_nFbWWFUGPVEu6Iqk1HZCtbp1xpDlIZbpW1MyvaVgmlmKKOshnvWgBrhJAcnAIh7IwfofOP3OWq7aGzEEuRoEvp3gwbnYzX_26if9aLtNZcNJzWpAScfQYM6XUFedS9zxZCMBHSKmsqJa2Z4Pw_rIQ2NW3kTBRr_WG1Q8p5ALdrRIne0tQ7mnpLU1OqtzTL4cnf_-zO_uDjvwH2JZ9d</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>William, Christopher M</creator><creator>Andermann, Mark L</creator><creator>Goldey, Glenn J</creator><creator>Roumis, Demetris K</creator><creator>Reid, R Clay</creator><creator>Shatz, Carla J</creator><creator>Albers, Mark W</creator><creator>Frosch, Matthew P</creator><creator>Hyman, Bradley T</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120606</creationdate><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><author>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Animals</topic><topic>Eye Enucleation</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation</topic><topic>Polymerase Chain Reaction</topic><topic>Presenilin-1 - genetics</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Sensory Deprivation - physiology</topic><topic>Synapses - physiology</topic><topic>Vision, Ocular - physiology</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>William, Christopher M</creatorcontrib><creatorcontrib>Andermann, Mark L</creatorcontrib><creatorcontrib>Goldey, Glenn J</creatorcontrib><creatorcontrib>Roumis, Demetris K</creatorcontrib><creatorcontrib>Reid, R Clay</creatorcontrib><creatorcontrib>Shatz, Carla J</creatorcontrib><creatorcontrib>Albers, Mark W</creatorcontrib><creatorcontrib>Frosch, Matthew P</creatorcontrib><creatorcontrib>Hyman, Bradley T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>William, Christopher M</au><au>Andermann, Mark L</au><au>Goldey, Glenn J</au><au>Roumis, Demetris K</au><au>Reid, R Clay</au><au>Shatz, Carla J</au><au>Albers, Mark W</au><au>Frosch, Matthew P</au><au>Hyman, Bradley T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>32</volume><issue>23</issue><spage>8004</spage><epage>8011</epage><pages>8004-8011</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22674275</pmid><doi>10.1523/JNEUROSCI.5369-11.2012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-06, Vol.32 (23), p.8004-8011
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3493160
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alzheimer Disease - genetics
Alzheimer Disease - physiopathology
Amyloid beta-Protein Precursor - genetics
Animals
Eye Enucleation
Fluorescence
Humans
Image Processing, Computer-Assisted
Immunohistochemistry
In Situ Hybridization
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neuronal Plasticity - physiology
Neurons - physiology
Photic Stimulation
Polymerase Chain Reaction
Presenilin-1 - genetics
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Sensory Deprivation - physiology
Synapses - physiology
Vision, Ocular - physiology
Visual Cortex - cytology
Visual Cortex - physiology
title Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20plasticity%20defect%20following%20visual%20deprivation%20in%20Alzheimer's%20disease%20model%20transgenic%20mice&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=William,%20Christopher%20M&rft.date=2012-06-06&rft.volume=32&rft.issue=23&rft.spage=8004&rft.epage=8011&rft.pages=8004-8011&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5369-11.2012&rft_dat=%3Cproquest_pubme%3E1551624330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019619584&rft_id=info:pmid/22674275&rfr_iscdi=true