Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice
Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characteri...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2012-06, Vol.32 (23), p.8004-8011 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8011 |
---|---|
container_issue | 23 |
container_start_page | 8004 |
container_title | The Journal of neuroscience |
container_volume | 32 |
creator | William, Christopher M Andermann, Mark L Goldey, Glenn J Roumis, Demetris K Reid, R Clay Shatz, Carla J Albers, Mark W Frosch, Matthew P Hyman, Bradley T |
description | Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD. |
doi_str_mv | 10.1523/JNEUROSCI.5369-11.2012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3493160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551624330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</originalsourceid><addsrcrecordid>eNqNkUtPGzEUha0KVAL0LyDvYDOpn-PMBglFUKhQkXisLY_nOhh57DCeBIVfX0fQqN11daR7zz06Vx9CJ5RMqWT8-89fl0_3dw_zm6nkdVNROmWEsi9oUrZNxQShe2hCmCJVLZQ4QIc5vxBCFKHqKzpgrFaCKTlB3cMmmuXoLV4Gk4v6cYM7cGBH7FII6c3HBV77vDKhzJeDX5vRp4h9xBfh_Rl8D8Npxp3PYDLgPnUQ8DiYmBcQS2zvLRyjfWdChm-feoSeri4f59fV7d2Pm_nFbWWFUGPVEu6Iqk1HZCtbp1xpDlIZbpW1MyvaVgmlmKKOshnvWgBrhJAcnAIh7IwfofOP3OWq7aGzEEuRoEvp3gwbnYzX_26if9aLtNZcNJzWpAScfQYM6XUFedS9zxZCMBHSKmsqJa2Z4Pw_rIQ2NW3kTBRr_WG1Q8p5ALdrRIne0tQ7mnpLU1OqtzTL4cnf_-zO_uDjvwH2JZ9d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019619584</pqid></control><display><type>article</type><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</creator><creatorcontrib>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</creatorcontrib><description>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5369-11.2012</identifier><identifier>PMID: 22674275</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - physiopathology ; Amyloid beta-Protein Precursor - genetics ; Animals ; Eye Enucleation ; Fluorescence ; Humans ; Image Processing, Computer-Assisted ; Immunohistochemistry ; In Situ Hybridization ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuronal Plasticity - physiology ; Neurons - physiology ; Photic Stimulation ; Polymerase Chain Reaction ; Presenilin-1 - genetics ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Sensory Deprivation - physiology ; Synapses - physiology ; Vision, Ocular - physiology ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>The Journal of neuroscience, 2012-06, Vol.32 (23), p.8004-8011</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/328004-08$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493160/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493160/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22674275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>William, Christopher M</creatorcontrib><creatorcontrib>Andermann, Mark L</creatorcontrib><creatorcontrib>Goldey, Glenn J</creatorcontrib><creatorcontrib>Roumis, Demetris K</creatorcontrib><creatorcontrib>Reid, R Clay</creatorcontrib><creatorcontrib>Shatz, Carla J</creatorcontrib><creatorcontrib>Albers, Mark W</creatorcontrib><creatorcontrib>Frosch, Matthew P</creatorcontrib><creatorcontrib>Hyman, Bradley T</creatorcontrib><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Animals</subject><subject>Eye Enucleation</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation</subject><subject>Polymerase Chain Reaction</subject><subject>Presenilin-1 - genetics</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Sensory Deprivation - physiology</subject><subject>Synapses - physiology</subject><subject>Vision, Ocular - physiology</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPGzEUha0KVAL0LyDvYDOpn-PMBglFUKhQkXisLY_nOhh57DCeBIVfX0fQqN11daR7zz06Vx9CJ5RMqWT8-89fl0_3dw_zm6nkdVNROmWEsi9oUrZNxQShe2hCmCJVLZQ4QIc5vxBCFKHqKzpgrFaCKTlB3cMmmuXoLV4Gk4v6cYM7cGBH7FII6c3HBV77vDKhzJeDX5vRp4h9xBfh_Rl8D8Npxp3PYDLgPnUQ8DiYmBcQS2zvLRyjfWdChm-feoSeri4f59fV7d2Pm_nFbWWFUGPVEu6Iqk1HZCtbp1xpDlIZbpW1MyvaVgmlmKKOshnvWgBrhJAcnAIh7IwfofOP3OWq7aGzEEuRoEvp3gwbnYzX_26if9aLtNZcNJzWpAScfQYM6XUFedS9zxZCMBHSKmsqJa2Z4Pw_rIQ2NW3kTBRr_WG1Q8p5ALdrRIne0tQ7mnpLU1OqtzTL4cnf_-zO_uDjvwH2JZ9d</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>William, Christopher M</creator><creator>Andermann, Mark L</creator><creator>Goldey, Glenn J</creator><creator>Roumis, Demetris K</creator><creator>Reid, R Clay</creator><creator>Shatz, Carla J</creator><creator>Albers, Mark W</creator><creator>Frosch, Matthew P</creator><creator>Hyman, Bradley T</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120606</creationdate><title>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</title><author>William, Christopher M ; Andermann, Mark L ; Goldey, Glenn J ; Roumis, Demetris K ; Reid, R Clay ; Shatz, Carla J ; Albers, Mark W ; Frosch, Matthew P ; Hyman, Bradley T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b03f076ad05b5bf7f474e57a3c7cc8c4bb7477271f1283dbeeca4453ef7e44c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Animals</topic><topic>Eye Enucleation</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation</topic><topic>Polymerase Chain Reaction</topic><topic>Presenilin-1 - genetics</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Sensory Deprivation - physiology</topic><topic>Synapses - physiology</topic><topic>Vision, Ocular - physiology</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>William, Christopher M</creatorcontrib><creatorcontrib>Andermann, Mark L</creatorcontrib><creatorcontrib>Goldey, Glenn J</creatorcontrib><creatorcontrib>Roumis, Demetris K</creatorcontrib><creatorcontrib>Reid, R Clay</creatorcontrib><creatorcontrib>Shatz, Carla J</creatorcontrib><creatorcontrib>Albers, Mark W</creatorcontrib><creatorcontrib>Frosch, Matthew P</creatorcontrib><creatorcontrib>Hyman, Bradley T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>William, Christopher M</au><au>Andermann, Mark L</au><au>Goldey, Glenn J</au><au>Roumis, Demetris K</au><au>Reid, R Clay</au><au>Shatz, Carla J</au><au>Albers, Mark W</au><au>Frosch, Matthew P</au><au>Hyman, Bradley T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>32</volume><issue>23</issue><spage>8004</spage><epage>8011</epage><pages>8004-8011</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Amyloid-β (Aβ)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aβ generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aβ overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aβ exposure contributes to cognitive impairment in AD.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22674275</pmid><doi>10.1523/JNEUROSCI.5369-11.2012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2012-06, Vol.32 (23), p.8004-8011 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3493160 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alzheimer Disease - genetics Alzheimer Disease - physiopathology Amyloid beta-Protein Precursor - genetics Animals Eye Enucleation Fluorescence Humans Image Processing, Computer-Assisted Immunohistochemistry In Situ Hybridization Mice Mice, Inbred C57BL Mice, Transgenic Neuronal Plasticity - physiology Neurons - physiology Photic Stimulation Polymerase Chain Reaction Presenilin-1 - genetics RNA, Messenger - biosynthesis RNA, Messenger - genetics Sensory Deprivation - physiology Synapses - physiology Vision, Ocular - physiology Visual Cortex - cytology Visual Cortex - physiology |
title | Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20plasticity%20defect%20following%20visual%20deprivation%20in%20Alzheimer's%20disease%20model%20transgenic%20mice&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=William,%20Christopher%20M&rft.date=2012-06-06&rft.volume=32&rft.issue=23&rft.spage=8004&rft.epage=8011&rft.pages=8004-8011&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5369-11.2012&rft_dat=%3Cproquest_pubme%3E1551624330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019619584&rft_id=info:pmid/22674275&rfr_iscdi=true |