Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]

In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase ( AOC ) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-09, Vol.160 (3), p.1251-1266
Hauptverfasser: Neumann, Piotr, Brodhun, Florian, Sauer, Kristin, Herrfurth, Cornelia, Hamberg, Mats, Brinkmann, Jens, Scholz, Julia, Dickmanns, Achim, Feussner, Ivo, Ficner, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1266
container_issue 3
container_start_page 1251
container_title Plant physiology (Bethesda)
container_volume 160
creator Neumann, Piotr
Brodhun, Florian
Sauer, Kristin
Herrfurth, Cornelia
Hamberg, Mats
Brinkmann, Jens
Scholz, Julia
Dickmanns, Achim
Feussner, Ivo
Ficner, Ralf
description In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase ( AOC ) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C 18 - and C 20 -derived substrates, respectively. To better understand AOC ’s catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13 S -epoxy-9 Z ,15 Z -octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C 18 substrate analog with in silico modeling of the C 20 substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).
doi_str_mv 10.1104/pp.112.205138
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3490582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3490582</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_34905823</originalsourceid><addsrcrecordid>eNqljE9LwzAYh4MorlOP3t8vsJmkLaYehFEnepAJFTyMUbLs7Rpp05CkQv0QfmY78eJ5p-eB3x9CrhmdM0aTG2tH8jmnKYvFCYlYGvMZTxNxSiJKR6dCZBMy9f6DUspilpyTCeeZuBUijch37gYfZANFcL0KvUMPXQWv9eBV1-rgsGkkWBnQeFiscgbS7A7C7-DZeL2vgwdtQgehRliar6FFeEFVS6N9-1t-0FWFDo3CQxOKfuuDGw-hsKh0pZUOA1u_b9arxeaSnFWy8Xj1xwty_7h8y59mtt-2uFNoxmlTWqdb6Yayk7r8nxhdl_vus4yTjKaCx0cf_ADiKXOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Neumann, Piotr ; Brodhun, Florian ; Sauer, Kristin ; Herrfurth, Cornelia ; Hamberg, Mats ; Brinkmann, Jens ; Scholz, Julia ; Dickmanns, Achim ; Feussner, Ivo ; Ficner, Ralf</creator><creatorcontrib>Neumann, Piotr ; Brodhun, Florian ; Sauer, Kristin ; Herrfurth, Cornelia ; Hamberg, Mats ; Brinkmann, Jens ; Scholz, Julia ; Dickmanns, Achim ; Feussner, Ivo ; Ficner, Ralf</creatorcontrib><description>In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase ( AOC ) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C 18 - and C 20 -derived substrates, respectively. To better understand AOC ’s catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13 S -epoxy-9 Z ,15 Z -octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C 18 substrate analog with in silico modeling of the C 20 substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.205138</identifier><identifier>PMID: 22987885</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Biochemical Processes and Macromolecular Structures</subject><ispartof>Plant physiology (Bethesda), 2012-09, Vol.160 (3), p.1251-1266</ispartof><rights>2012 American Society of Plant Biologists. All Rights Reserved. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Neumann, Piotr</creatorcontrib><creatorcontrib>Brodhun, Florian</creatorcontrib><creatorcontrib>Sauer, Kristin</creatorcontrib><creatorcontrib>Herrfurth, Cornelia</creatorcontrib><creatorcontrib>Hamberg, Mats</creatorcontrib><creatorcontrib>Brinkmann, Jens</creatorcontrib><creatorcontrib>Scholz, Julia</creatorcontrib><creatorcontrib>Dickmanns, Achim</creatorcontrib><creatorcontrib>Feussner, Ivo</creatorcontrib><creatorcontrib>Ficner, Ralf</creatorcontrib><title>Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]</title><title>Plant physiology (Bethesda)</title><description>In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase ( AOC ) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C 18 - and C 20 -derived substrates, respectively. To better understand AOC ’s catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13 S -epoxy-9 Z ,15 Z -octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C 18 substrate analog with in silico modeling of the C 20 substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).</description><subject>Biochemical Processes and Macromolecular Structures</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqljE9LwzAYh4MorlOP3t8vsJmkLaYehFEnepAJFTyMUbLs7Rpp05CkQv0QfmY78eJ5p-eB3x9CrhmdM0aTG2tH8jmnKYvFCYlYGvMZTxNxSiJKR6dCZBMy9f6DUspilpyTCeeZuBUijch37gYfZANFcL0KvUMPXQWv9eBV1-rgsGkkWBnQeFiscgbS7A7C7-DZeL2vgwdtQgehRliar6FFeEFVS6N9-1t-0FWFDo3CQxOKfuuDGw-hsKh0pZUOA1u_b9arxeaSnFWy8Xj1xwty_7h8y59mtt-2uFNoxmlTWqdb6Yayk7r8nxhdl_vus4yTjKaCx0cf_ADiKXOc</recordid><startdate>20120917</startdate><enddate>20120917</enddate><creator>Neumann, Piotr</creator><creator>Brodhun, Florian</creator><creator>Sauer, Kristin</creator><creator>Herrfurth, Cornelia</creator><creator>Hamberg, Mats</creator><creator>Brinkmann, Jens</creator><creator>Scholz, Julia</creator><creator>Dickmanns, Achim</creator><creator>Feussner, Ivo</creator><creator>Ficner, Ralf</creator><general>American Society of Plant Biologists</general><scope>5PM</scope></search><sort><creationdate>20120917</creationdate><title>Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]</title><author>Neumann, Piotr ; Brodhun, Florian ; Sauer, Kristin ; Herrfurth, Cornelia ; Hamberg, Mats ; Brinkmann, Jens ; Scholz, Julia ; Dickmanns, Achim ; Feussner, Ivo ; Ficner, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_34905823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemical Processes and Macromolecular Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumann, Piotr</creatorcontrib><creatorcontrib>Brodhun, Florian</creatorcontrib><creatorcontrib>Sauer, Kristin</creatorcontrib><creatorcontrib>Herrfurth, Cornelia</creatorcontrib><creatorcontrib>Hamberg, Mats</creatorcontrib><creatorcontrib>Brinkmann, Jens</creatorcontrib><creatorcontrib>Scholz, Julia</creatorcontrib><creatorcontrib>Dickmanns, Achim</creatorcontrib><creatorcontrib>Feussner, Ivo</creatorcontrib><creatorcontrib>Ficner, Ralf</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumann, Piotr</au><au>Brodhun, Florian</au><au>Sauer, Kristin</au><au>Herrfurth, Cornelia</au><au>Hamberg, Mats</au><au>Brinkmann, Jens</au><au>Scholz, Julia</au><au>Dickmanns, Achim</au><au>Feussner, Ivo</au><au>Ficner, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2012-09-17</date><risdate>2012</risdate><volume>160</volume><issue>3</issue><spage>1251</spage><epage>1266</epage><pages>1251-1266</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase ( AOC ) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C 18 - and C 20 -derived substrates, respectively. To better understand AOC ’s catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13 S -epoxy-9 Z ,15 Z -octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C 18 substrate analog with in silico modeling of the C 20 substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).</abstract><pub>American Society of Plant Biologists</pub><pmid>22987885</pmid><doi>10.1104/pp.112.205138</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-09, Vol.160 (3), p.1251-1266
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3490582
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Biochemical Processes and Macromolecular Structures
title Crystal Structures of Physcomitrella patens AOC1 and AOC2: Insights into the Enzyme Mechanism and Differences in Substrate Specificity1[W][OA]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structures%20of%20Physcomitrella%20patens%20AOC1%20and%20AOC2:%20Insights%20into%20the%20Enzyme%20Mechanism%20and%20Differences%20in%20Substrate%20Specificity1%5BW%5D%5BOA%5D&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Neumann,%20Piotr&rft.date=2012-09-17&rft.volume=160&rft.issue=3&rft.spage=1251&rft.epage=1266&rft.pages=1251-1266&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.112.205138&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3490582%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22987885&rfr_iscdi=true