Multi-sensory integration in brainstem and auditory cortex

Abstract Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory–somatosensory (bimodal) integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2012-11, Vol.1485 (Nov 16), p.95-107
Hauptverfasser: Basura, Gregory J, Koehler, Seth D, Shore, Susan E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue Nov 16
container_start_page 95
container_title Brain research
container_volume 1485
creator Basura, Gregory J
Koehler, Seth D
Shore, Susan E
description Abstract Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory–somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory–somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
doi_str_mv 10.1016/j.brainres.2012.08.037
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3489970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899312013911</els_id><sourcerecordid>1139616942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c682t-bcbfe688296bca243fe8a9ebc9c8f1d5a02feda9cd9ea6109b62409449db70593</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxS0EokvhK5Q9csnif3FsDhVVRQGpiEPpeeQ4k8VL1i52UrHfvk63rYDLnmzLv3l-4zeEnDC6YpSp95tVm6wPCfOKU8ZXVK-oaJ6RBdMNrxSX9DlZUEpVpY0RR-RVzptyFMLQl-SIc2PqWtYL8uHbNIy-yhhyTLulDyOukx19DGW_vH8jj7hd2tAt7dT5caZcTCP-eU1e9HbI-OZhPSbXF59-nH-pLr9__np-dlk5pflYta7tUWnNjWqd5VL0qK3B1hmne9bVlvIeO2tcZ9AqRk07uzdSmq5taG3EMTnd695M7RY7h2FMdoCb5Lc27SBaD__eBP8T1vEWhCy9N7QIvHsQSPH3hHmErc8Oh8EGjFMGJmSjqZZUHkZZw3T5untbh1BhFFNG8oKqPepSzDlh_2SeUZjjhA08xglznEA1lDhL4cnfrT-VPeZXgLd7oLcR7Dr5DNdXRaEuWRup9Nz8xz2BJaJbjwmy8xgcdj6hG6GL_rCL0_8k3OCDd3b4hTvMmzilUAYAGORSA1fz2M1Tx4qIMOUf7gBXVNPY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139616942</pqid></control><display><type>article</type><title>Multi-sensory integration in brainstem and auditory cortex</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Basura, Gregory J ; Koehler, Seth D ; Shore, Susan E</creator><creatorcontrib>Basura, Gregory J ; Koehler, Seth D ; Shore, Susan E</creatorcontrib><description>Abstract Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory–somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory–somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2012.08.037</identifier><identifier>PMID: 22995545</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustic Stimulation ; Animals ; Auditory Cortex - chemistry ; Auditory Cortex - physiology ; Auditory pathways ; Auditory Perception - physiology ; Bimodal integration ; Brain ; Brain stem ; Brain Stem - chemistry ; Brain Stem - physiology ; Cochlear nuclei ; Cochlear Nucleus - physiology ; cortex ; Cortex (auditory) ; Cortex (somatosensory) ; Data Interpretation, Statistical ; Dorsal cochlear nucleus ; Electric Stimulation ; Electrodes ; Electrophysiological Phenomena ; Female ; Firing pattern ; Firing rate ; Guinea Pigs ; hearing ; Hearing loss ; Integration ; Nervous system ; Neurology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Perception ; Physical Stimulation ; Primary auditory cortex ; Pyramidal cells ; Sensory integration ; Somatosensory ; Somatosensory system ; Spinal trigeminal nucleus ; Tinnitus ; Tinnitus - physiopathology ; Trigeminal Nuclei - physiology ; Unit activity</subject><ispartof>Brain research, 2012-11, Vol.1485 (Nov 16), p.95-107</ispartof><rights>2012</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c682t-bcbfe688296bca243fe8a9ebc9c8f1d5a02feda9cd9ea6109b62409449db70593</citedby><cites>FETCH-LOGICAL-c682t-bcbfe688296bca243fe8a9ebc9c8f1d5a02feda9cd9ea6109b62409449db70593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2012.08.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basura, Gregory J</creatorcontrib><creatorcontrib>Koehler, Seth D</creatorcontrib><creatorcontrib>Shore, Susan E</creatorcontrib><title>Multi-sensory integration in brainstem and auditory cortex</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory–somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory–somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Auditory Cortex - chemistry</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory pathways</subject><subject>Auditory Perception - physiology</subject><subject>Bimodal integration</subject><subject>Brain</subject><subject>Brain stem</subject><subject>Brain Stem - chemistry</subject><subject>Brain Stem - physiology</subject><subject>Cochlear nuclei</subject><subject>Cochlear Nucleus - physiology</subject><subject>cortex</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Data Interpretation, Statistical</subject><subject>Dorsal cochlear nucleus</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Electrophysiological Phenomena</subject><subject>Female</subject><subject>Firing pattern</subject><subject>Firing rate</subject><subject>Guinea Pigs</subject><subject>hearing</subject><subject>Hearing loss</subject><subject>Integration</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Perception</subject><subject>Physical Stimulation</subject><subject>Primary auditory cortex</subject><subject>Pyramidal cells</subject><subject>Sensory integration</subject><subject>Somatosensory</subject><subject>Somatosensory system</subject><subject>Spinal trigeminal nucleus</subject><subject>Tinnitus</subject><subject>Tinnitus - physiopathology</subject><subject>Trigeminal Nuclei - physiology</subject><subject>Unit activity</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v1DAQxS0EokvhK5Q9csnif3FsDhVVRQGpiEPpeeQ4k8VL1i52UrHfvk63rYDLnmzLv3l-4zeEnDC6YpSp95tVm6wPCfOKU8ZXVK-oaJ6RBdMNrxSX9DlZUEpVpY0RR-RVzptyFMLQl-SIc2PqWtYL8uHbNIy-yhhyTLulDyOukx19DGW_vH8jj7hd2tAt7dT5caZcTCP-eU1e9HbI-OZhPSbXF59-nH-pLr9__np-dlk5pflYta7tUWnNjWqd5VL0qK3B1hmne9bVlvIeO2tcZ9AqRk07uzdSmq5taG3EMTnd695M7RY7h2FMdoCb5Lc27SBaD__eBP8T1vEWhCy9N7QIvHsQSPH3hHmErc8Oh8EGjFMGJmSjqZZUHkZZw3T5untbh1BhFFNG8oKqPepSzDlh_2SeUZjjhA08xglznEA1lDhL4cnfrT-VPeZXgLd7oLcR7Dr5DNdXRaEuWRup9Nz8xz2BJaJbjwmy8xgcdj6hG6GL_rCL0_8k3OCDd3b4hTvMmzilUAYAGORSA1fz2M1Tx4qIMOUf7gBXVNPY</recordid><startdate>20121116</startdate><enddate>20121116</enddate><creator>Basura, Gregory J</creator><creator>Koehler, Seth D</creator><creator>Shore, Susan E</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7T9</scope><scope>5PM</scope></search><sort><creationdate>20121116</creationdate><title>Multi-sensory integration in brainstem and auditory cortex</title><author>Basura, Gregory J ; Koehler, Seth D ; Shore, Susan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c682t-bcbfe688296bca243fe8a9ebc9c8f1d5a02feda9cd9ea6109b62409449db70593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Auditory Cortex - chemistry</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory pathways</topic><topic>Auditory Perception - physiology</topic><topic>Bimodal integration</topic><topic>Brain</topic><topic>Brain stem</topic><topic>Brain Stem - chemistry</topic><topic>Brain Stem - physiology</topic><topic>Cochlear nuclei</topic><topic>Cochlear Nucleus - physiology</topic><topic>cortex</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Data Interpretation, Statistical</topic><topic>Dorsal cochlear nucleus</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Electrophysiological Phenomena</topic><topic>Female</topic><topic>Firing pattern</topic><topic>Firing rate</topic><topic>Guinea Pigs</topic><topic>hearing</topic><topic>Hearing loss</topic><topic>Integration</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Perception</topic><topic>Physical Stimulation</topic><topic>Primary auditory cortex</topic><topic>Pyramidal cells</topic><topic>Sensory integration</topic><topic>Somatosensory</topic><topic>Somatosensory system</topic><topic>Spinal trigeminal nucleus</topic><topic>Tinnitus</topic><topic>Tinnitus - physiopathology</topic><topic>Trigeminal Nuclei - physiology</topic><topic>Unit activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basura, Gregory J</creatorcontrib><creatorcontrib>Koehler, Seth D</creatorcontrib><creatorcontrib>Shore, Susan E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basura, Gregory J</au><au>Koehler, Seth D</au><au>Shore, Susan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-sensory integration in brainstem and auditory cortex</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2012-11-16</date><risdate>2012</risdate><volume>1485</volume><issue>Nov 16</issue><spage>95</spage><epage>107</epage><pages>95-107</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><abstract>Abstract Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory–somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory–somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22995545</pmid><doi>10.1016/j.brainres.2012.08.037</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2012-11, Vol.1485 (Nov 16), p.95-107
issn 0006-8993
1872-6240
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3489970
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acoustic Stimulation
Animals
Auditory Cortex - chemistry
Auditory Cortex - physiology
Auditory pathways
Auditory Perception - physiology
Bimodal integration
Brain
Brain stem
Brain Stem - chemistry
Brain Stem - physiology
Cochlear nuclei
Cochlear Nucleus - physiology
cortex
Cortex (auditory)
Cortex (somatosensory)
Data Interpretation, Statistical
Dorsal cochlear nucleus
Electric Stimulation
Electrodes
Electrophysiological Phenomena
Female
Firing pattern
Firing rate
Guinea Pigs
hearing
Hearing loss
Integration
Nervous system
Neurology
Neuronal Plasticity - physiology
Neurons - physiology
Perception
Physical Stimulation
Primary auditory cortex
Pyramidal cells
Sensory integration
Somatosensory
Somatosensory system
Spinal trigeminal nucleus
Tinnitus
Tinnitus - physiopathology
Trigeminal Nuclei - physiology
Unit activity
title Multi-sensory integration in brainstem and auditory cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-sensory%20integration%20in%20brainstem%20and%20auditory%20cortex&rft.jtitle=Brain%20research&rft.au=Basura,%20Gregory%20J&rft.date=2012-11-16&rft.volume=1485&rft.issue=Nov%2016&rft.spage=95&rft.epage=107&rft.pages=95-107&rft.issn=0006-8993&rft.eissn=1872-6240&rft_id=info:doi/10.1016/j.brainres.2012.08.037&rft_dat=%3Cproquest_pubme%3E1139616942%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139616942&rft_id=info:pmid/22995545&rft_els_id=S0006899312013911&rfr_iscdi=true