uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells

Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2012-08, Vol.41 (2), p.599-610
Hauptverfasser: ALAPATI, KIRANMAI, GOPINATH, SREELATHA, MALLA, RAMA RAO, DASARI, VENKATA RAMESH, RAO, JASTI S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue 2
container_start_page 599
container_title International journal of oncology
container_volume 41
creator ALAPATI, KIRANMAI
GOPINATH, SREELATHA
MALLA, RAMA RAO
DASARI, VENKATA RAMESH
RAO, JASTI S
description Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133+) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells.
doi_str_mv 10.3892/ijo.2012.1496
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3482985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932323663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-4e6bf6681cfa948939284775d07517a7be69c358ab4bfcdecb2323f5fa00593b3</originalsourceid><addsrcrecordid>eNpVkUtv1DAURiMEoqWwZIsssWDlqd-JN0hlxEut1ArB2nJsJ-OZjD3YDqh_gV-NoykjuvK17vG5vvqa5jVGK9pJcum3cUUQJivMpHjSnONWYkgYoU9rjbCEglF51rzIeYsQ4Rzh580ZIYJh0rXnzZ_57uob0MECo8vGHbIP4APYhWh2Nv4OwIeN733JIGnrdfExQB_sbJwFd9fr2i5uTLrU67Gsz7Mfg558GEGJoDqBuS8x79zkSgwgDmCcfNzr6vFlUVbQuGnKL5tng56ye_VwXjQ_Pn38vv4Cb24_f11f3UDDMS2QOdEPQnTYDFqyTlJJOta23KKW41a3vRPSUN7pnvWDsc70hBI68EEjxCXt6UXz_ug9zP3eWeNCSXpSh-T3Ot2rqL163Al-o8b4S1HWEdnxKnj7IEjx5-xyUds4p7pzVljSZZoQtFLwSJkUc05uOE3ASC3RqRqdWqJTS3SVf_P_t070v6wq8O4I5EPNy9uYT0w1QYYhIrCuKOlfjAClbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932323663</pqid></control><display><type>article</type><title>uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ALAPATI, KIRANMAI ; GOPINATH, SREELATHA ; MALLA, RAMA RAO ; DASARI, VENKATA RAMESH ; RAO, JASTI S</creator><creatorcontrib>ALAPATI, KIRANMAI ; GOPINATH, SREELATHA ; MALLA, RAMA RAO ; DASARI, VENKATA RAMESH ; RAO, JASTI S</creatorcontrib><description>Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133+) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells.</description><identifier>ISSN: 1019-6439</identifier><identifier>EISSN: 1791-2423</identifier><identifier>DOI: 10.3892/ijo.2012.1496</identifier><identifier>PMID: 22641287</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Acetophenones - pharmacology ; Animals ; Antigens, Differentiation - metabolism ; Benzopyrans - pharmacology ; Brain cancer ; Breast cancer ; Cancer therapies ; cathepsin B ; Cathepsin B - genetics ; Cathepsin B - metabolism ; Cell adhesion &amp; migration ; Cell Adhesion Molecules, Neuronal - metabolism ; Cell Line, Tumor ; Cell Movement ; Cell Transformation, Neoplastic ; Cytoskeleton ; Cytoskeleton - metabolism ; Extracellular Matrix - metabolism ; Extracellular Matrix - physiology ; focal adhesion kinase ; Gene Expression - radiation effects ; Gene Knockdown Techniques ; glioblastoma stem cells ; Glioma ; Glioma - pathology ; Growth factors ; Humans ; Hypotheses ; Integrin beta1 - metabolism ; integrins ; Integrins - metabolism ; Kinases ; Mice ; Mice, Nude ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - radiation effects ; Penicillin ; Protein Binding ; protein kinase C ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - metabolism ; Proteins ; Radiation therapy ; Radiation Tolerance ; Receptors, Urokinase Plasminogen Activator - genetics ; Receptors, Urokinase Plasminogen Activator - metabolism ; RNA Interference ; RNA, Small Interfering - genetics ; Signal Transduction ; Spheroids, Cellular - metabolism ; Tumors ; uPAR ; vinculin ; Xenograft Model Antitumor Assays ; α-actinin</subject><ispartof>International journal of oncology, 2012-08, Vol.41 (2), p.599-610</ispartof><rights>Copyright © 2012, Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2012</rights><rights>Copyright © 2012, Spandidos Publications 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-4e6bf6681cfa948939284775d07517a7be69c358ab4bfcdecb2323f5fa00593b3</citedby><cites>FETCH-LOGICAL-c513t-4e6bf6681cfa948939284775d07517a7be69c358ab4bfcdecb2323f5fa00593b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,5556,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22641287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ALAPATI, KIRANMAI</creatorcontrib><creatorcontrib>GOPINATH, SREELATHA</creatorcontrib><creatorcontrib>MALLA, RAMA RAO</creatorcontrib><creatorcontrib>DASARI, VENKATA RAMESH</creatorcontrib><creatorcontrib>RAO, JASTI S</creatorcontrib><title>uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells</title><title>International journal of oncology</title><addtitle>Int J Oncol</addtitle><description>Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133+) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells.</description><subject>Acetophenones - pharmacology</subject><subject>Animals</subject><subject>Antigens, Differentiation - metabolism</subject><subject>Benzopyrans - pharmacology</subject><subject>Brain cancer</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>cathepsin B</subject><subject>Cathepsin B - genetics</subject><subject>Cathepsin B - metabolism</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Transformation, Neoplastic</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix - physiology</subject><subject>focal adhesion kinase</subject><subject>Gene Expression - radiation effects</subject><subject>Gene Knockdown Techniques</subject><subject>glioblastoma stem cells</subject><subject>Glioma</subject><subject>Glioma - pathology</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Integrin beta1 - metabolism</subject><subject>integrins</subject><subject>Integrins - metabolism</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - radiation effects</subject><subject>Penicillin</subject><subject>Protein Binding</subject><subject>protein kinase C</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - metabolism</subject><subject>Proteins</subject><subject>Radiation therapy</subject><subject>Radiation Tolerance</subject><subject>Receptors, Urokinase Plasminogen Activator - genetics</subject><subject>Receptors, Urokinase Plasminogen Activator - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>Spheroids, Cellular - metabolism</subject><subject>Tumors</subject><subject>uPAR</subject><subject>vinculin</subject><subject>Xenograft Model Antitumor Assays</subject><subject>α-actinin</subject><issn>1019-6439</issn><issn>1791-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpVkUtv1DAURiMEoqWwZIsssWDlqd-JN0hlxEut1ArB2nJsJ-OZjD3YDqh_gV-NoykjuvK17vG5vvqa5jVGK9pJcum3cUUQJivMpHjSnONWYkgYoU9rjbCEglF51rzIeYsQ4Rzh580ZIYJh0rXnzZ_57uob0MECo8vGHbIP4APYhWh2Nv4OwIeN733JIGnrdfExQB_sbJwFd9fr2i5uTLrU67Gsz7Mfg558GEGJoDqBuS8x79zkSgwgDmCcfNzr6vFlUVbQuGnKL5tng56ye_VwXjQ_Pn38vv4Cb24_f11f3UDDMS2QOdEPQnTYDFqyTlJJOta23KKW41a3vRPSUN7pnvWDsc70hBI68EEjxCXt6UXz_ug9zP3eWeNCSXpSh-T3Ot2rqL163Al-o8b4S1HWEdnxKnj7IEjx5-xyUds4p7pzVljSZZoQtFLwSJkUc05uOE3ASC3RqRqdWqJTS3SVf_P_t070v6wq8O4I5EPNy9uYT0w1QYYhIrCuKOlfjAClbA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>ALAPATI, KIRANMAI</creator><creator>GOPINATH, SREELATHA</creator><creator>MALLA, RAMA RAO</creator><creator>DASARI, VENKATA RAMESH</creator><creator>RAO, JASTI S</creator><general>D.A. Spandidos</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells</title><author>ALAPATI, KIRANMAI ; GOPINATH, SREELATHA ; MALLA, RAMA RAO ; DASARI, VENKATA RAMESH ; RAO, JASTI S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-4e6bf6681cfa948939284775d07517a7be69c358ab4bfcdecb2323f5fa00593b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetophenones - pharmacology</topic><topic>Animals</topic><topic>Antigens, Differentiation - metabolism</topic><topic>Benzopyrans - pharmacology</topic><topic>Brain cancer</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>cathepsin B</topic><topic>Cathepsin B - genetics</topic><topic>Cathepsin B - metabolism</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Transformation, Neoplastic</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix - physiology</topic><topic>focal adhesion kinase</topic><topic>Gene Expression - radiation effects</topic><topic>Gene Knockdown Techniques</topic><topic>glioblastoma stem cells</topic><topic>Glioma</topic><topic>Glioma - pathology</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Integrin beta1 - metabolism</topic><topic>integrins</topic><topic>Integrins - metabolism</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - radiation effects</topic><topic>Penicillin</topic><topic>Protein Binding</topic><topic>protein kinase C</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - metabolism</topic><topic>Proteins</topic><topic>Radiation therapy</topic><topic>Radiation Tolerance</topic><topic>Receptors, Urokinase Plasminogen Activator - genetics</topic><topic>Receptors, Urokinase Plasminogen Activator - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>Spheroids, Cellular - metabolism</topic><topic>Tumors</topic><topic>uPAR</topic><topic>vinculin</topic><topic>Xenograft Model Antitumor Assays</topic><topic>α-actinin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALAPATI, KIRANMAI</creatorcontrib><creatorcontrib>GOPINATH, SREELATHA</creatorcontrib><creatorcontrib>MALLA, RAMA RAO</creatorcontrib><creatorcontrib>DASARI, VENKATA RAMESH</creatorcontrib><creatorcontrib>RAO, JASTI S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALAPATI, KIRANMAI</au><au>GOPINATH, SREELATHA</au><au>MALLA, RAMA RAO</au><au>DASARI, VENKATA RAMESH</au><au>RAO, JASTI S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells</atitle><jtitle>International journal of oncology</jtitle><addtitle>Int J Oncol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>41</volume><issue>2</issue><spage>599</spage><epage>610</epage><pages>599-610</pages><issn>1019-6439</issn><eissn>1791-2423</eissn><abstract>Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133+) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>22641287</pmid><doi>10.3892/ijo.2012.1496</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-6439
ispartof International journal of oncology, 2012-08, Vol.41 (2), p.599-610
issn 1019-6439
1791-2423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3482985
source Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acetophenones - pharmacology
Animals
Antigens, Differentiation - metabolism
Benzopyrans - pharmacology
Brain cancer
Breast cancer
Cancer therapies
cathepsin B
Cathepsin B - genetics
Cathepsin B - metabolism
Cell adhesion & migration
Cell Adhesion Molecules, Neuronal - metabolism
Cell Line, Tumor
Cell Movement
Cell Transformation, Neoplastic
Cytoskeleton
Cytoskeleton - metabolism
Extracellular Matrix - metabolism
Extracellular Matrix - physiology
focal adhesion kinase
Gene Expression - radiation effects
Gene Knockdown Techniques
glioblastoma stem cells
Glioma
Glioma - pathology
Growth factors
Humans
Hypotheses
Integrin beta1 - metabolism
integrins
Integrins - metabolism
Kinases
Mice
Mice, Nude
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - radiation effects
Penicillin
Protein Binding
protein kinase C
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - metabolism
Proteins
Radiation therapy
Radiation Tolerance
Receptors, Urokinase Plasminogen Activator - genetics
Receptors, Urokinase Plasminogen Activator - metabolism
RNA Interference
RNA, Small Interfering - genetics
Signal Transduction
Spheroids, Cellular - metabolism
Tumors
uPAR
vinculin
Xenograft Model Antitumor Assays
α-actinin
title uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=uPAR%20and%20cathepsin%20B%20knockdown%20inhibits%20radiation-induced%20PKC%20integrated%20integrin%20signaling%20to%20the%20cytoskeleton%20of%20glioma-initiating%20cells&rft.jtitle=International%20journal%20of%20oncology&rft.au=ALAPATI,%20KIRANMAI&rft.date=2012-08-01&rft.volume=41&rft.issue=2&rft.spage=599&rft.epage=610&rft.pages=599-610&rft.issn=1019-6439&rft.eissn=1791-2423&rft_id=info:doi/10.3892/ijo.2012.1496&rft_dat=%3Cproquest_pubme%3E1932323663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932323663&rft_id=info:pmid/22641287&rfr_iscdi=true