Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel

Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vagina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-09, Vol.19 (18), p.2969-2977
Hauptverfasser: Jay, Julie I., Shukair, Shetha, Langheinrich, Kristofer, Hanson, Melissa C., Cianci, Gianguido C., Johnson, Todd J., Clark, Meredith R., Hope, Thomas J., Kiser, Patrick F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2977
container_issue 18
container_start_page 2969
container_title Advanced functional materials
container_volume 19
creator Jay, Julie I.
Shukair, Shetha
Langheinrich, Kristofer
Hanson, Melissa C.
Cianci, Gianguido C.
Johnson, Todd J.
Clark, Meredith R.
Hope, Thomas J.
Kiser, Patrick F.
description Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency‐dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the G′Plateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV‐1 and 100‐nm latex particles in the PBA–SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble‐averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV‐1 and 100‐nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002 µm2 s−1. This pH‐responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV‐1 to susceptible tissues and thus prevent the first stage of male‐to‐female transmission of HIV‐1. pH modulates the viscoelasticity and HIV transport in hydrogels created by the pH‐sensitive equilibrium between polymer‐bound phenylboronic acid (PBA, blue in figure) and salicylhydroxamic acid (SHA, green in figure). At vaginal pH the PBA–SHA crosslink rapidly hydrolyzes and reforms yielding viscoelastic gels. Above pH 5.5 the rate of hydrolysis decreases resulting in more permanently covalent crosslinks and elastic gel behavior that impedes HIV transport.
doi_str_mv 10.1002/adfm.200900757
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743690561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-4e031db7e816b1f3f889a76c80e45e31a3c9684f0443ec125dec4ded482aac483</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSNERT_gyhH5BpcsduzEzgWp2jbdSm0RsBRulteZtKZee7GTQv57vNo2Khc4jTX-vefxvCx7TfCMYFy8V223nhUY1xjzkj_LDkhFqpziQjyfzuT7fnYY4w-MCeeUvcj2C0pwktOD7PbSt4NVvfEO-Q5dm6g9WBV7o00_IuVatDi_RsugXNz40CMVkULN4PSjZLNAxqXeZ7iHEM3KjmgefIzWuDtI6rEN_gbsy2yvUzbCq4d6lH1tTpfzRX7x8ex8fnyR65JgnjPAlLQrDoJUK9LRToha8UoLDKwEShTVdSVYhxmjoElRtqBZCy0ThVKaCXqUfdj5bobVGloNrg_Kyk0waxVG6ZWRf984cytv_L2kjAvOtwZvHwyC_zlA7OU6LQWsVQ78ECVntKpxWZFEvvsnSQQt01xFxRI626F6u5oA3TQQwXIbpNwGKacgk-DN029M-GNyCah3wC9jYfyPnTw-aS6fmuc7rYk9_J60KtzJilNeym9XZ3LJm09CfGnSk38A0_i6mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835482264</pqid></control><display><type>article</type><title>Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel</title><source>Access via Wiley Online Library</source><creator>Jay, Julie I. ; Shukair, Shetha ; Langheinrich, Kristofer ; Hanson, Melissa C. ; Cianci, Gianguido C. ; Johnson, Todd J. ; Clark, Meredith R. ; Hope, Thomas J. ; Kiser, Patrick F.</creator><creatorcontrib>Jay, Julie I. ; Shukair, Shetha ; Langheinrich, Kristofer ; Hanson, Melissa C. ; Cianci, Gianguido C. ; Johnson, Todd J. ; Clark, Meredith R. ; Hope, Thomas J. ; Kiser, Patrick F.</creatorcontrib><description>Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency‐dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the G′Plateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV‐1 and 100‐nm latex particles in the PBA–SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble‐averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV‐1 and 100‐nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002 µm2 s−1. This pH‐responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV‐1 to susceptible tissues and thus prevent the first stage of male‐to‐female transmission of HIV‐1. pH modulates the viscoelasticity and HIV transport in hydrogels created by the pH‐sensitive equilibrium between polymer‐bound phenylboronic acid (PBA, blue in figure) and salicylhydroxamic acid (SHA, green in figure). At vaginal pH the PBA–SHA crosslink rapidly hydrolyzes and reforms yielding viscoelastic gels. Above pH 5.5 the rate of hydrolysis decreases resulting in more permanently covalent crosslinks and elastic gel behavior that impedes HIV transport.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200900757</identifier><identifier>PMID: 23101003</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>HIV transport inhibition ; Microbicides ; pH responsive materials ; Stimuli-responsive materials</subject><ispartof>Advanced functional materials, 2009-09, Vol.19 (18), p.2969-2977</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-4e031db7e816b1f3f889a76c80e45e31a3c9684f0443ec125dec4ded482aac483</citedby><cites>FETCH-LOGICAL-c5107-4e031db7e816b1f3f889a76c80e45e31a3c9684f0443ec125dec4ded482aac483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200900757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200900757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23101003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jay, Julie I.</creatorcontrib><creatorcontrib>Shukair, Shetha</creatorcontrib><creatorcontrib>Langheinrich, Kristofer</creatorcontrib><creatorcontrib>Hanson, Melissa C.</creatorcontrib><creatorcontrib>Cianci, Gianguido C.</creatorcontrib><creatorcontrib>Johnson, Todd J.</creatorcontrib><creatorcontrib>Clark, Meredith R.</creatorcontrib><creatorcontrib>Hope, Thomas J.</creatorcontrib><creatorcontrib>Kiser, Patrick F.</creatorcontrib><title>Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency‐dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the G′Plateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV‐1 and 100‐nm latex particles in the PBA–SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble‐averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV‐1 and 100‐nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002 µm2 s−1. This pH‐responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV‐1 to susceptible tissues and thus prevent the first stage of male‐to‐female transmission of HIV‐1. pH modulates the viscoelasticity and HIV transport in hydrogels created by the pH‐sensitive equilibrium between polymer‐bound phenylboronic acid (PBA, blue in figure) and salicylhydroxamic acid (SHA, green in figure). At vaginal pH the PBA–SHA crosslink rapidly hydrolyzes and reforms yielding viscoelastic gels. Above pH 5.5 the rate of hydrolysis decreases resulting in more permanently covalent crosslinks and elastic gel behavior that impedes HIV transport.</description><subject>HIV transport inhibition</subject><subject>Microbicides</subject><subject>pH responsive materials</subject><subject>Stimuli-responsive materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSNERT_gyhH5BpcsduzEzgWp2jbdSm0RsBRulteZtKZee7GTQv57vNo2Khc4jTX-vefxvCx7TfCMYFy8V223nhUY1xjzkj_LDkhFqpziQjyfzuT7fnYY4w-MCeeUvcj2C0pwktOD7PbSt4NVvfEO-Q5dm6g9WBV7o00_IuVatDi_RsugXNz40CMVkULN4PSjZLNAxqXeZ7iHEM3KjmgefIzWuDtI6rEN_gbsy2yvUzbCq4d6lH1tTpfzRX7x8ex8fnyR65JgnjPAlLQrDoJUK9LRToha8UoLDKwEShTVdSVYhxmjoElRtqBZCy0ThVKaCXqUfdj5bobVGloNrg_Kyk0waxVG6ZWRf984cytv_L2kjAvOtwZvHwyC_zlA7OU6LQWsVQ78ECVntKpxWZFEvvsnSQQt01xFxRI626F6u5oA3TQQwXIbpNwGKacgk-DN029M-GNyCah3wC9jYfyPnTw-aS6fmuc7rYk9_J60KtzJilNeym9XZ3LJm09CfGnSk38A0_i6mw</recordid><startdate>20090923</startdate><enddate>20090923</enddate><creator>Jay, Julie I.</creator><creator>Shukair, Shetha</creator><creator>Langheinrich, Kristofer</creator><creator>Hanson, Melissa C.</creator><creator>Cianci, Gianguido C.</creator><creator>Johnson, Todd J.</creator><creator>Clark, Meredith R.</creator><creator>Hope, Thomas J.</creator><creator>Kiser, Patrick F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20090923</creationdate><title>Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel</title><author>Jay, Julie I. ; Shukair, Shetha ; Langheinrich, Kristofer ; Hanson, Melissa C. ; Cianci, Gianguido C. ; Johnson, Todd J. ; Clark, Meredith R. ; Hope, Thomas J. ; Kiser, Patrick F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-4e031db7e816b1f3f889a76c80e45e31a3c9684f0443ec125dec4ded482aac483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>HIV transport inhibition</topic><topic>Microbicides</topic><topic>pH responsive materials</topic><topic>Stimuli-responsive materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jay, Julie I.</creatorcontrib><creatorcontrib>Shukair, Shetha</creatorcontrib><creatorcontrib>Langheinrich, Kristofer</creatorcontrib><creatorcontrib>Hanson, Melissa C.</creatorcontrib><creatorcontrib>Cianci, Gianguido C.</creatorcontrib><creatorcontrib>Johnson, Todd J.</creatorcontrib><creatorcontrib>Clark, Meredith R.</creatorcontrib><creatorcontrib>Hope, Thomas J.</creatorcontrib><creatorcontrib>Kiser, Patrick F.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jay, Julie I.</au><au>Shukair, Shetha</au><au>Langheinrich, Kristofer</au><au>Hanson, Melissa C.</au><au>Cianci, Gianguido C.</au><au>Johnson, Todd J.</au><au>Clark, Meredith R.</au><au>Hope, Thomas J.</au><au>Kiser, Patrick F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2009-09-23</date><risdate>2009</risdate><volume>19</volume><issue>18</issue><spage>2969</spage><epage>2977</epage><pages>2969-2977</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency‐dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the G′Plateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV‐1 and 100‐nm latex particles in the PBA–SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble‐averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV‐1 and 100‐nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002 µm2 s−1. This pH‐responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV‐1 to susceptible tissues and thus prevent the first stage of male‐to‐female transmission of HIV‐1. pH modulates the viscoelasticity and HIV transport in hydrogels created by the pH‐sensitive equilibrium between polymer‐bound phenylboronic acid (PBA, blue in figure) and salicylhydroxamic acid (SHA, green in figure). At vaginal pH the PBA–SHA crosslink rapidly hydrolyzes and reforms yielding viscoelastic gels. Above pH 5.5 the rate of hydrolysis decreases resulting in more permanently covalent crosslinks and elastic gel behavior that impedes HIV transport.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23101003</pmid><doi>10.1002/adfm.200900757</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2009-09, Vol.19 (18), p.2969-2977
issn 1616-301X
1616-3028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478778
source Access via Wiley Online Library
subjects HIV transport inhibition
Microbicides
pH responsive materials
Stimuli-responsive materials
title Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Viscoelasticity%20and%20HIV%20Transport%20as%20a%20Function%20of%20pH%20in%20a%20Reversibly%20Crosslinked%20Hydrogel&rft.jtitle=Advanced%20functional%20materials&rft.au=Jay,%20Julie%20I.&rft.date=2009-09-23&rft.volume=19&rft.issue=18&rft.spage=2969&rft.epage=2977&rft.pages=2969-2977&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200900757&rft_dat=%3Cproquest_pubme%3E743690561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835482264&rft_id=info:pmid/23101003&rfr_iscdi=true