Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4

Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2012-11, Vol.61 (11), p.2743-2752
Hauptverfasser: PEHMØLLER, Christian, BRANDT, Nina, BIRK, Jesper B, HØEG, Louise D, SJØBERG, Kim A, GOODYEAR, Laurie J, KIENS, Bente, RICHTER, Erik A, WOJTASZEWSKI, Jørgen F. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2752
container_issue 11
container_start_page 2743
container_title Diabetes (New York, N.Y.)
container_volume 61
creator PEHMØLLER, Christian
BRANDT, Nina
BIRK, Jesper B
HØEG, Louise D
SJØBERG, Kim A
GOODYEAR, Laurie J
KIENS, Bente
RICHTER, Erik A
WOJTASZEWSKI, Jørgen F. P
description Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.
doi_str_mv 10.2337/db11-1572
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A311048410</galeid><sourcerecordid>A311048410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c676t-b7d7fe09817194a6a9d2cdf94e32b2a99927d6a2034f0e9cc21b44f9548384f63</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEokNhwQsgS4gFixT_TRxvkIahPyNNVYkWiZ3lODepi-MMsTNqd7wCC16QJ8EjhpaRRuguLNvfPbaPT5a9JPiIMibe1RUhOZkK-iibEMlkzqj48jibYExoToQUB9mzEG4wxkWqp9kBpeU08WKS_Ti-hcHYAGjmHKytjhDQ0q5snS98PRqo0cKH0VmPPkGwIWpvAKXZ2dhpjy6_goOoHTofg3Hw6_vPS9t6nfA29UUYtIm290hHFK8BLWENDvUNuvowJ-hj3-mkdKI76-7QOXQVDIg_z5402gV4sR0Ps88nx1fzs3x5cbqYz5a5KUQR80rUogEsSyKI5LrQsqambiQHRiuqpZRU1IWmmPEGgzSGkorzRk55yUreFOwwe_9HdzVWHdQGfBy0U6vBdnq4U722anfH22vV9mvFuCinTCaB11uBof82Qojqph-H9PigCC1KQaZc8Aeq1Q6U9U2fxExng1EzRgjmJSc4UfkeqgWfHHS9h8am5R3-aA-fqobOmr0Nb3caEhPhNrZ6DEGVp8v_XWbLmj4lpAWVfmF-sVfbDH0IAzT3JhKsNgFVm4CqTUAT--pf1-_Jv4lMwJstoIPRrhlS4Gx44IpCpoMp-w0GM-sJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1268715474</pqid></control><display><type>article</type><title>Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><source>PubMed Central</source><creator>PEHMØLLER, Christian ; BRANDT, Nina ; BIRK, Jesper B ; HØEG, Louise D ; SJØBERG, Kim A ; GOODYEAR, Laurie J ; KIENS, Bente ; RICHTER, Erik A ; WOJTASZEWSKI, Jørgen F. P</creator><creatorcontrib>PEHMØLLER, Christian ; BRANDT, Nina ; BIRK, Jesper B ; HØEG, Louise D ; SJØBERG, Kim A ; GOODYEAR, Laurie J ; KIENS, Bente ; RICHTER, Erik A ; WOJTASZEWSKI, Jørgen F. P</creatorcontrib><description>Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db11-1572</identifier><identifier>PMID: 22851577</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Adult ; Analysis ; Biological and medical sciences ; Catheters ; Dehydrogenases ; Diabetes ; Diabetes. Impaired glucose tolerance ; Emulsions - adverse effects ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Exercise ; Fat Emulsions, Intravenous - adverse effects ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - administration &amp; dosage ; Glucose - metabolism ; Glycogen Synthase - metabolism ; GTPase-Activating Proteins - metabolism ; Health aspects ; Humans ; Hypoglycemic Agents - pharmacology ; Hypotheses ; Insulin - pharmacology ; Insulin Resistance ; Insulin, Regular, Pork ; Kinases ; Lactic Acid - metabolism ; Leg ; Lipids ; Male ; Medical sciences ; Metabolism ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Phospholipids - adverse effects ; Phosphorylation ; Phosphorylation - drug effects ; Protein Processing, Post-Translational - drug effects ; Proteins ; Pyruvate Dehydrogenase Complex - metabolism ; Signal transduction ; Signal Transduction - drug effects ; Soybean Oil - adverse effects ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system ; Workloads</subject><ispartof>Diabetes (New York, N.Y.), 2012-11, Vol.61 (11), p.2743-2752</ispartof><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 American Diabetes Association</rights><rights>COPYRIGHT 2012 American Diabetes Association</rights><rights>Copyright American Diabetes Association Nov 2012</rights><rights>2012 by the American Diabetes Association. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c676t-b7d7fe09817194a6a9d2cdf94e32b2a99927d6a2034f0e9cc21b44f9548384f63</citedby><cites>FETCH-LOGICAL-c676t-b7d7fe09817194a6a9d2cdf94e32b2a99927d6a2034f0e9cc21b44f9548384f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478539/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478539/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26691102$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22851577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PEHMØLLER, Christian</creatorcontrib><creatorcontrib>BRANDT, Nina</creatorcontrib><creatorcontrib>BIRK, Jesper B</creatorcontrib><creatorcontrib>HØEG, Louise D</creatorcontrib><creatorcontrib>SJØBERG, Kim A</creatorcontrib><creatorcontrib>GOODYEAR, Laurie J</creatorcontrib><creatorcontrib>KIENS, Bente</creatorcontrib><creatorcontrib>RICHTER, Erik A</creatorcontrib><creatorcontrib>WOJTASZEWSKI, Jørgen F. P</creatorcontrib><title>Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.</description><subject>Adult</subject><subject>Analysis</subject><subject>Biological and medical sciences</subject><subject>Catheters</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Emulsions - adverse effects</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Exercise</subject><subject>Fat Emulsions, Intravenous - adverse effects</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - administration &amp; dosage</subject><subject>Glucose - metabolism</subject><subject>Glycogen Synthase - metabolism</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Hypotheses</subject><subject>Insulin - pharmacology</subject><subject>Insulin Resistance</subject><subject>Insulin, Regular, Pork</subject><subject>Kinases</subject><subject>Lactic Acid - metabolism</subject><subject>Leg</subject><subject>Lipids</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Phospholipids - adverse effects</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Proteins</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Soybean Oil - adverse effects</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><subject>Workloads</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ks1u1DAUhSMEokNhwQsgS4gFixT_TRxvkIahPyNNVYkWiZ3lODepi-MMsTNqd7wCC16QJ8EjhpaRRuguLNvfPbaPT5a9JPiIMibe1RUhOZkK-iibEMlkzqj48jibYExoToQUB9mzEG4wxkWqp9kBpeU08WKS_Ti-hcHYAGjmHKytjhDQ0q5snS98PRqo0cKH0VmPPkGwIWpvAKXZ2dhpjy6_goOoHTofg3Hw6_vPS9t6nfA29UUYtIm290hHFK8BLWENDvUNuvowJ-hj3-mkdKI76-7QOXQVDIg_z5402gV4sR0Ps88nx1fzs3x5cbqYz5a5KUQR80rUogEsSyKI5LrQsqambiQHRiuqpZRU1IWmmPEGgzSGkorzRk55yUreFOwwe_9HdzVWHdQGfBy0U6vBdnq4U722anfH22vV9mvFuCinTCaB11uBof82Qojqph-H9PigCC1KQaZc8Aeq1Q6U9U2fxExng1EzRgjmJSc4UfkeqgWfHHS9h8am5R3-aA-fqobOmr0Nb3caEhPhNrZ6DEGVp8v_XWbLmj4lpAWVfmF-sVfbDH0IAzT3JhKsNgFVm4CqTUAT--pf1-_Jv4lMwJstoIPRrhlS4Gx44IpCpoMp-w0GM-sJ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>PEHMØLLER, Christian</creator><creator>BRANDT, Nina</creator><creator>BIRK, Jesper B</creator><creator>HØEG, Louise D</creator><creator>SJØBERG, Kim A</creator><creator>GOODYEAR, Laurie J</creator><creator>KIENS, Bente</creator><creator>RICHTER, Erik A</creator><creator>WOJTASZEWSKI, Jørgen F. P</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4</title><author>PEHMØLLER, Christian ; BRANDT, Nina ; BIRK, Jesper B ; HØEG, Louise D ; SJØBERG, Kim A ; GOODYEAR, Laurie J ; KIENS, Bente ; RICHTER, Erik A ; WOJTASZEWSKI, Jørgen F. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c676t-b7d7fe09817194a6a9d2cdf94e32b2a99927d6a2034f0e9cc21b44f9548384f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Biological and medical sciences</topic><topic>Catheters</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Emulsions - adverse effects</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Exercise</topic><topic>Fat Emulsions, Intravenous - adverse effects</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - administration &amp; dosage</topic><topic>Glucose - metabolism</topic><topic>Glycogen Synthase - metabolism</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Hypotheses</topic><topic>Insulin - pharmacology</topic><topic>Insulin Resistance</topic><topic>Insulin, Regular, Pork</topic><topic>Kinases</topic><topic>Lactic Acid - metabolism</topic><topic>Leg</topic><topic>Lipids</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Phospholipids - adverse effects</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Proteins</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Soybean Oil - adverse effects</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PEHMØLLER, Christian</creatorcontrib><creatorcontrib>BRANDT, Nina</creatorcontrib><creatorcontrib>BIRK, Jesper B</creatorcontrib><creatorcontrib>HØEG, Louise D</creatorcontrib><creatorcontrib>SJØBERG, Kim A</creatorcontrib><creatorcontrib>GOODYEAR, Laurie J</creatorcontrib><creatorcontrib>KIENS, Bente</creatorcontrib><creatorcontrib>RICHTER, Erik A</creatorcontrib><creatorcontrib>WOJTASZEWSKI, Jørgen F. P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PEHMØLLER, Christian</au><au>BRANDT, Nina</au><au>BIRK, Jesper B</au><au>HØEG, Louise D</au><au>SJØBERG, Kim A</au><au>GOODYEAR, Laurie J</au><au>KIENS, Bente</au><au>RICHTER, Erik A</au><au>WOJTASZEWSKI, Jørgen F. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>61</volume><issue>11</issue><spage>2743</spage><epage>2752</epage><pages>2743-2752</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>22851577</pmid><doi>10.2337/db11-1572</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2012-11, Vol.61 (11), p.2743-2752
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478539
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload; PubMed Central
subjects Adult
Analysis
Biological and medical sciences
Catheters
Dehydrogenases
Diabetes
Diabetes. Impaired glucose tolerance
Emulsions - adverse effects
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Exercise
Fat Emulsions, Intravenous - adverse effects
Fatty acids
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - administration & dosage
Glucose - metabolism
Glycogen Synthase - metabolism
GTPase-Activating Proteins - metabolism
Health aspects
Humans
Hypoglycemic Agents - pharmacology
Hypotheses
Insulin - pharmacology
Insulin Resistance
Insulin, Regular, Pork
Kinases
Lactic Acid - metabolism
Leg
Lipids
Male
Medical sciences
Metabolism
Muscle, Skeletal - metabolism
Musculoskeletal system
Phospholipids - adverse effects
Phosphorylation
Phosphorylation - drug effects
Protein Processing, Post-Translational - drug effects
Proteins
Pyruvate Dehydrogenase Complex - metabolism
Signal transduction
Signal Transduction - drug effects
Soybean Oil - adverse effects
Striated muscle. Tendons
Vertebrates: osteoarticular system, musculoskeletal system
Workloads
title Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle―Signaling Interaction at the Level of TBC1 Domain Family Member 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exercise%20Alleviates%20Lipid-Induced%20Insulin%20Resistance%20in%20Human%20Skeletal%20Muscle%E2%80%95Signaling%20Interaction%20at%20the%20Level%20of%20TBC1%20Domain%20Family%20Member%204&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=PEHM%C3%98LLER,%20Christian&rft.date=2012-11-01&rft.volume=61&rft.issue=11&rft.spage=2743&rft.epage=2752&rft.pages=2743-2752&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/db11-1572&rft_dat=%3Cgale_pubme%3EA311048410%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1268715474&rft_id=info:pmid/22851577&rft_galeid=A311048410&rfr_iscdi=true