Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism

DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB hel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2012-01, Vol.2012 (2012), p.1-11
Hauptverfasser: Lin, Hsin-Hsien, Huang, Cheng-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2012
container_start_page 1
container_title BioMed research international
container_volume 2012
creator Lin, Hsin-Hsien
Huang, Cheng-Yang
description DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.
doi_str_mv 10.1155/2012/735368
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3468084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A339000225</galeid><sourcerecordid>A339000225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-7795e8e27b90e1aecd0e9f3f54ffc3f7ed617bbaafe9e2da0ceaa9193b2d4923</originalsourceid><addsrcrecordid>eNqN0k1v1DAQBuAIUdFSOHEGReoFAWn9EScxB6SytLRSKxDs3Zo4411Xib04SRGIH49XaReKVirKIdH48euPTJI8o-SQUiGOGKHsqOSCF9WDZI9SSrKSCfpw853z3eRx318RQsuqkI-SXcaJpFwUe8mv2RIC6AGD_QmD9S71Jj1t4do736bnbmlre1v-4OB9eoat1dBj-jb9gtBmc9theumdHXywbvEm_TqEUQ9jgDaWm6jXRXBN-jn4le-xSS9RL8HZvnuS7Bhoe3x6895P5qcn89lZdvHp4_ns-CLTBS-HrCylwApZWUuCFFA3BKXhRuTGaG5KbApa1jWAQYmsAaIRQFLJa9bkkvH95N0UuxrrDhuNboi7U6tgOwg_lAer7o44u1QLf614XlSkymPAy5uA4L-N2A-qs73GtgWHfuwVZZUgMkLxH1SUpWAVLe6nlOZSEJaTSA_-oVd-DC7e2XptxrhkTPxRC2hRWWd8PI1eh6pjziUhZFLZFrVAh_Ho3qGxsXzHH27x8Wmws3rrhNfTBB183wc0m5umRK07Vq07Vk0dG_WLv3_Oxt62aASvJrC0roHv9p605xPGSNDABucyzyXhvwE0J_ta</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282239225</pqid></control><display><type>article</type><title>Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lin, Hsin-Hsien ; Huang, Cheng-Yang</creator><contributor>Mowbray, S. L.</contributor><creatorcontrib>Lin, Hsin-Hsien ; Huang, Cheng-Yang ; Mowbray, S. L.</creatorcontrib><description>DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 1110-7251</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2012/735368</identifier><identifier>PMID: 23091356</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adenosinetriphosphatase ; Antibiotics ; Bacterial pneumonia ; Binding Sites ; Bioflavonoids ; Chemical properties ; Computer Simulation ; Computer Systems ; Deoxyribonucleic acid ; DNA ; DNA replication ; DnaB Helicases - chemistry ; DnaB Helicases - ultrastructure ; Enzyme Activation ; Enzyme Inhibitors - chemistry ; Enzyme Stability ; Enzymes ; Flavones ; Flavonoids ; Flavonols - chemistry ; Infections ; Klebsiella pneumoniae ; Life sciences ; Models, Chemical ; Models, Molecular ; Myosin ; Pneumonia ; Protein Binding ; Protein Conformation ; Proteins</subject><ispartof>BioMed research international, 2012-01, Vol.2012 (2012), p.1-11</ispartof><rights>Copyright © 2012 Hsin-Hsien Lin and Cheng-Yang Huang.</rights><rights>COPYRIGHT 2012 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2012 Hsin-Hsien Lin and Cheng-Yang Huang. Hsin-Hsien Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2012 H.-H. Lin and C.-Y. Huang. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-7795e8e27b90e1aecd0e9f3f54ffc3f7ed617bbaafe9e2da0ceaa9193b2d4923</citedby><cites>FETCH-LOGICAL-c637t-7795e8e27b90e1aecd0e9f3f54ffc3f7ed617bbaafe9e2da0ceaa9193b2d4923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468084/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468084/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23091356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mowbray, S. L.</contributor><creatorcontrib>Lin, Hsin-Hsien</creatorcontrib><creatorcontrib>Huang, Cheng-Yang</creatorcontrib><title>Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.</description><subject>Adenosinetriphosphatase</subject><subject>Antibiotics</subject><subject>Bacterial pneumonia</subject><subject>Binding Sites</subject><subject>Bioflavonoids</subject><subject>Chemical properties</subject><subject>Computer Simulation</subject><subject>Computer Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA replication</subject><subject>DnaB Helicases - chemistry</subject><subject>DnaB Helicases - ultrastructure</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Flavones</subject><subject>Flavonoids</subject><subject>Flavonols - chemistry</subject><subject>Infections</subject><subject>Klebsiella pneumoniae</subject><subject>Life sciences</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Myosin</subject><subject>Pneumonia</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>1110-7251</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0k1v1DAQBuAIUdFSOHEGReoFAWn9EScxB6SytLRSKxDs3Zo4411Xib04SRGIH49XaReKVirKIdH48euPTJI8o-SQUiGOGKHsqOSCF9WDZI9SSrKSCfpw853z3eRx318RQsuqkI-SXcaJpFwUe8mv2RIC6AGD_QmD9S71Jj1t4do736bnbmlre1v-4OB9eoat1dBj-jb9gtBmc9theumdHXywbvEm_TqEUQ9jgDaWm6jXRXBN-jn4le-xSS9RL8HZvnuS7Bhoe3x6895P5qcn89lZdvHp4_ns-CLTBS-HrCylwApZWUuCFFA3BKXhRuTGaG5KbApa1jWAQYmsAaIRQFLJa9bkkvH95N0UuxrrDhuNboi7U6tgOwg_lAer7o44u1QLf614XlSkymPAy5uA4L-N2A-qs73GtgWHfuwVZZUgMkLxH1SUpWAVLe6nlOZSEJaTSA_-oVd-DC7e2XptxrhkTPxRC2hRWWd8PI1eh6pjziUhZFLZFrVAh_Ho3qGxsXzHH27x8Wmws3rrhNfTBB183wc0m5umRK07Vq07Vk0dG_WLv3_Oxt62aASvJrC0roHv9p605xPGSNDABucyzyXhvwE0J_ta</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Lin, Hsin-Hsien</creator><creator>Huang, Cheng-Yang</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism</title><author>Lin, Hsin-Hsien ; Huang, Cheng-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-7795e8e27b90e1aecd0e9f3f54ffc3f7ed617bbaafe9e2da0ceaa9193b2d4923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosinetriphosphatase</topic><topic>Antibiotics</topic><topic>Bacterial pneumonia</topic><topic>Binding Sites</topic><topic>Bioflavonoids</topic><topic>Chemical properties</topic><topic>Computer Simulation</topic><topic>Computer Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA replication</topic><topic>DnaB Helicases - chemistry</topic><topic>DnaB Helicases - ultrastructure</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Flavones</topic><topic>Flavonoids</topic><topic>Flavonols - chemistry</topic><topic>Infections</topic><topic>Klebsiella pneumoniae</topic><topic>Life sciences</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Myosin</topic><topic>Pneumonia</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hsin-Hsien</creatorcontrib><creatorcontrib>Huang, Cheng-Yang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hsin-Hsien</au><au>Huang, Cheng-Yang</au><au>Mowbray, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>1110-7251</eissn><eissn>2314-6141</eissn><abstract>DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>23091356</pmid><doi>10.1155/2012/735368</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-7243
ispartof BioMed research international, 2012-01, Vol.2012 (2012), p.1-11
issn 1110-7243
2314-6133
1110-7251
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3468084
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Adenosinetriphosphatase
Antibiotics
Bacterial pneumonia
Binding Sites
Bioflavonoids
Chemical properties
Computer Simulation
Computer Systems
Deoxyribonucleic acid
DNA
DNA replication
DnaB Helicases - chemistry
DnaB Helicases - ultrastructure
Enzyme Activation
Enzyme Inhibitors - chemistry
Enzyme Stability
Enzymes
Flavones
Flavonoids
Flavonols - chemistry
Infections
Klebsiella pneumoniae
Life sciences
Models, Chemical
Models, Molecular
Myosin
Pneumonia
Protein Binding
Protein Conformation
Proteins
title Characterization of Flavonol Inhibition of DnaB Helicase : Real-Time Monitoring, Structural Modeling, and Proposed Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Flavonol%20Inhibition%20of%20DnaB%20Helicase%20:%20Real-Time%20Monitoring,%20Structural%20Modeling,%20and%20Proposed%20Mechanism&rft.jtitle=BioMed%20research%20international&rft.au=Lin,%20Hsin-Hsien&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-7243&rft.eissn=1110-7251&rft_id=info:doi/10.1155/2012/735368&rft_dat=%3Cgale_pubme%3EA339000225%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282239225&rft_id=info:pmid/23091356&rft_galeid=A339000225&rfr_iscdi=true