Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis

Arabidopsis seedlings display rhythmic growth when grown under diurnal conditions, with maximal elongation rates occurring at the end of the night under short‐day photoperiods. Current evidence indicates that this behavior involves the action of the growth‐promoting bHLH factors PHYTOCHROME‐INTERACT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-08, Vol.71 (3), p.390-401
Hauptverfasser: Soy, Judit, Leivar, Pablo, González‐Schain, Nahuel, Sentandreu, Maria, Prat, Salomé, Quail, Peter H, Monte, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 3
container_start_page 390
container_title The Plant journal : for cell and molecular biology
container_volume 71
creator Soy, Judit
Leivar, Pablo
González‐Schain, Nahuel
Sentandreu, Maria
Prat, Salomé
Quail, Peter H
Monte, Elena
description Arabidopsis seedlings display rhythmic growth when grown under diurnal conditions, with maximal elongation rates occurring at the end of the night under short‐day photoperiods. Current evidence indicates that this behavior involves the action of the growth‐promoting bHLH factors PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) at the end of the night, through a coincidence mechanism that combines their transcriptional regulation by the circadian clock with control of protein accumulation by light. To assess the possible role of PIF3 in this process, we have analyzed hypocotyl responses and marker gene expression in pif single‐ and higher‐order mutants. The data show that PIF3 plays a prominent role as a promoter of seedling growth under diurnal light/dark conditions, in conjunction with PIF4 and PIF5. In addition, we provide evidence that PIF3 functions in this process through its intrinsic transcriptional regulatory activity, at least in part by directly targeting growth‐related genes, and independently of its ability to regulate phytochrome B (phyB) levels. Furthermore, in sharp contrast to PIF4 and PIF5, our data show that the PIF3 gene is not subject to transcriptional regulation by the clock, but that PIF3 protein abundance oscillates under diurnal conditions as a result of a progressive decline in PIF3 protein degradation mediated by photoactivated phyB, and consequent accumulation of the bHLH factor during the dark period. Collectively, the data suggest that phyB‐mediated, post‐translational regulation allows PIF3 accumulation to peak just before dawn, at which time it accelerates hypocotyl growth, together with PIF4 and PIF5, by directly regulating the induction of growth‐related genes.
doi_str_mv 10.1111/j.1365-313X.2012.04992.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3465574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721715051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7012-5c77c473f00d1a85112fee501898bfdf82e3a723f49274f6d21d0f74357261c3</originalsourceid><addsrcrecordid>eNqNkctuEzEUhi0EoiXwCmAJIbFJ6ut4ZgFSVVEoqkQkgsTOcnzJOEzGU3uGNju27HhGngRPE8JlgfDGts73_z7HPwAQoxnO62Q9w7TgU4rpxxlBmMwQqyoyu7kDjg-Fu-AYVQWaCobJEXiQ0hohLGjB7oMjQliucXYMvs7rbR90HcPGfv_yzW-6kKyBIWnfNKr3oU3Qt3B-cU5hF0Nv80Uth9aoVlsY7WrIlIX1tgs69NsGrmK47muYCRuh8UNsVQMbv6r7E6PiJ6hDa_zB9zSqpTehSz49BPecapJ9tN8nYHH-anH2Znr57vXF2enlVIs86ZRrITQT1CFksCo5xsRZyxEuq3LpjCuJpUoQ6lhFBHOFIdggJxjlghRY0wl4ubPthuXGGm3bPqpGdtFvVNzKoLz8s9L6Wq7CZ0lZwXn2mYDne4MYrgabernxSdv8W60NQ5IYlajAhBKR0ad_oetw-yEjRURVVpyUmSp3lI4hpWjdoRmM5Bi3XMsxVTmmKse45W3c8iZLH_8-zEH4M98MPNsDKmnVuJhj8-kXV2COOK0y92LHXfvGbv-7AbmYvx1PWf9kp3cqSLWK-Y0P7zPJEEK0QgL9kyCozNY_AP0E3F4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027989528</pqid></control><display><type>article</type><title>Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Soy, Judit ; Leivar, Pablo ; González‐Schain, Nahuel ; Sentandreu, Maria ; Prat, Salomé ; Quail, Peter H ; Monte, Elena</creator><creatorcontrib>Soy, Judit ; Leivar, Pablo ; González‐Schain, Nahuel ; Sentandreu, Maria ; Prat, Salomé ; Quail, Peter H ; Monte, Elena</creatorcontrib><description>Arabidopsis seedlings display rhythmic growth when grown under diurnal conditions, with maximal elongation rates occurring at the end of the night under short‐day photoperiods. Current evidence indicates that this behavior involves the action of the growth‐promoting bHLH factors PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) at the end of the night, through a coincidence mechanism that combines their transcriptional regulation by the circadian clock with control of protein accumulation by light. To assess the possible role of PIF3 in this process, we have analyzed hypocotyl responses and marker gene expression in pif single‐ and higher‐order mutants. The data show that PIF3 plays a prominent role as a promoter of seedling growth under diurnal light/dark conditions, in conjunction with PIF4 and PIF5. In addition, we provide evidence that PIF3 functions in this process through its intrinsic transcriptional regulatory activity, at least in part by directly targeting growth‐related genes, and independently of its ability to regulate phytochrome B (phyB) levels. Furthermore, in sharp contrast to PIF4 and PIF5, our data show that the PIF3 gene is not subject to transcriptional regulation by the clock, but that PIF3 protein abundance oscillates under diurnal conditions as a result of a progressive decline in PIF3 protein degradation mediated by photoactivated phyB, and consequent accumulation of the bHLH factor during the dark period. Collectively, the data suggest that phyB‐mediated, post‐translational regulation allows PIF3 accumulation to peak just before dawn, at which time it accelerates hypocotyl growth, together with PIF4 and PIF5, by directly regulating the induction of growth‐related genes.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2012.04992.x</identifier><identifier>PMID: 22409654</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological and medical sciences ; Circadian Clocks ; Circadian Rhythm ; Darkness ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Plant - physiology ; genes ; genetic markers ; Genomics ; Hypocotyl - genetics ; Hypocotyl - growth &amp; development ; Hypocotyl - physiology ; Hypocotyl - radiation effects ; hypocotyl elongation ; hypocotyls ; Light ; Molecular and cellular biology ; Molecular genetics ; mutants ; Mutation ; Photoperiod ; Phytochrome B - genetics ; Phytochrome B - metabolism ; phytochrome‐mediated degradation ; PIF3 ; Plant growth ; Plant physiology and development ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Promoter Regions, Genetic - genetics ; protein degradation ; Proteins ; Proteolysis ; scotophase ; seedling growth ; Seedlings - genetics ; Seedlings - growth &amp; development ; Seedlings - physiology ; Seedlings - radiation effects ; short day ; Signal Transduction - physiology ; transcription (genetics) ; Transcription. Transcription factor. Splicing. Rna processing ; transcriptional regulation</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.390-401</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><rights>2012 The Authors 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7012-5c77c473f00d1a85112fee501898bfdf82e3a723f49274f6d21d0f74357261c3</citedby><cites>FETCH-LOGICAL-c7012-5c77c473f00d1a85112fee501898bfdf82e3a723f49274f6d21d0f74357261c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.04992.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.04992.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26150539$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22409654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soy, Judit</creatorcontrib><creatorcontrib>Leivar, Pablo</creatorcontrib><creatorcontrib>González‐Schain, Nahuel</creatorcontrib><creatorcontrib>Sentandreu, Maria</creatorcontrib><creatorcontrib>Prat, Salomé</creatorcontrib><creatorcontrib>Quail, Peter H</creatorcontrib><creatorcontrib>Monte, Elena</creatorcontrib><title>Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Arabidopsis seedlings display rhythmic growth when grown under diurnal conditions, with maximal elongation rates occurring at the end of the night under short‐day photoperiods. Current evidence indicates that this behavior involves the action of the growth‐promoting bHLH factors PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) at the end of the night, through a coincidence mechanism that combines their transcriptional regulation by the circadian clock with control of protein accumulation by light. To assess the possible role of PIF3 in this process, we have analyzed hypocotyl responses and marker gene expression in pif single‐ and higher‐order mutants. The data show that PIF3 plays a prominent role as a promoter of seedling growth under diurnal light/dark conditions, in conjunction with PIF4 and PIF5. In addition, we provide evidence that PIF3 functions in this process through its intrinsic transcriptional regulatory activity, at least in part by directly targeting growth‐related genes, and independently of its ability to regulate phytochrome B (phyB) levels. Furthermore, in sharp contrast to PIF4 and PIF5, our data show that the PIF3 gene is not subject to transcriptional regulation by the clock, but that PIF3 protein abundance oscillates under diurnal conditions as a result of a progressive decline in PIF3 protein degradation mediated by photoactivated phyB, and consequent accumulation of the bHLH factor during the dark period. Collectively, the data suggest that phyB‐mediated, post‐translational regulation allows PIF3 accumulation to peak just before dawn, at which time it accelerates hypocotyl growth, together with PIF4 and PIF5, by directly regulating the induction of growth‐related genes.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>Circadian Clocks</subject><subject>Circadian Rhythm</subject><subject>Darkness</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>genes</subject><subject>genetic markers</subject><subject>Genomics</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - growth &amp; development</subject><subject>Hypocotyl - physiology</subject><subject>Hypocotyl - radiation effects</subject><subject>hypocotyl elongation</subject><subject>hypocotyls</subject><subject>Light</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>mutants</subject><subject>Mutation</subject><subject>Photoperiod</subject><subject>Phytochrome B - genetics</subject><subject>Phytochrome B - metabolism</subject><subject>phytochrome‐mediated degradation</subject><subject>PIF3</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>scotophase</subject><subject>seedling growth</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth &amp; development</subject><subject>Seedlings - physiology</subject><subject>Seedlings - radiation effects</subject><subject>short day</subject><subject>Signal Transduction - physiology</subject><subject>transcription (genetics)</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>transcriptional regulation</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuEzEUhi0EoiXwCmAJIbFJ6ut4ZgFSVVEoqkQkgsTOcnzJOEzGU3uGNju27HhGngRPE8JlgfDGts73_z7HPwAQoxnO62Q9w7TgU4rpxxlBmMwQqyoyu7kDjg-Fu-AYVQWaCobJEXiQ0hohLGjB7oMjQliucXYMvs7rbR90HcPGfv_yzW-6kKyBIWnfNKr3oU3Qt3B-cU5hF0Nv80Uth9aoVlsY7WrIlIX1tgs69NsGrmK47muYCRuh8UNsVQMbv6r7E6PiJ6hDa_zB9zSqpTehSz49BPecapJ9tN8nYHH-anH2Znr57vXF2enlVIs86ZRrITQT1CFksCo5xsRZyxEuq3LpjCuJpUoQ6lhFBHOFIdggJxjlghRY0wl4ubPthuXGGm3bPqpGdtFvVNzKoLz8s9L6Wq7CZ0lZwXn2mYDne4MYrgabernxSdv8W60NQ5IYlajAhBKR0ad_oetw-yEjRURVVpyUmSp3lI4hpWjdoRmM5Bi3XMsxVTmmKse45W3c8iZLH_8-zEH4M98MPNsDKmnVuJhj8-kXV2COOK0y92LHXfvGbv-7AbmYvx1PWf9kp3cqSLWK-Y0P7zPJEEK0QgL9kyCozNY_AP0E3F4</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Soy, Judit</creator><creator>Leivar, Pablo</creator><creator>González‐Schain, Nahuel</creator><creator>Sentandreu, Maria</creator><creator>Prat, Salomé</creator><creator>Quail, Peter H</creator><creator>Monte, Elena</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201208</creationdate><title>Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis</title><author>Soy, Judit ; Leivar, Pablo ; González‐Schain, Nahuel ; Sentandreu, Maria ; Prat, Salomé ; Quail, Peter H ; Monte, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7012-5c77c473f00d1a85112fee501898bfdf82e3a723f49274f6d21d0f74357261c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>Circadian Clocks</topic><topic>Circadian Rhythm</topic><topic>Darkness</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>genes</topic><topic>genetic markers</topic><topic>Genomics</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - growth &amp; development</topic><topic>Hypocotyl - physiology</topic><topic>Hypocotyl - radiation effects</topic><topic>hypocotyl elongation</topic><topic>hypocotyls</topic><topic>Light</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>mutants</topic><topic>Mutation</topic><topic>Photoperiod</topic><topic>Phytochrome B - genetics</topic><topic>Phytochrome B - metabolism</topic><topic>phytochrome‐mediated degradation</topic><topic>PIF3</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>scotophase</topic><topic>seedling growth</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth &amp; development</topic><topic>Seedlings - physiology</topic><topic>Seedlings - radiation effects</topic><topic>short day</topic><topic>Signal Transduction - physiology</topic><topic>transcription (genetics)</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soy, Judit</creatorcontrib><creatorcontrib>Leivar, Pablo</creatorcontrib><creatorcontrib>González‐Schain, Nahuel</creatorcontrib><creatorcontrib>Sentandreu, Maria</creatorcontrib><creatorcontrib>Prat, Salomé</creatorcontrib><creatorcontrib>Quail, Peter H</creatorcontrib><creatorcontrib>Monte, Elena</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soy, Judit</au><au>Leivar, Pablo</au><au>González‐Schain, Nahuel</au><au>Sentandreu, Maria</au><au>Prat, Salomé</au><au>Quail, Peter H</au><au>Monte, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-08</date><risdate>2012</risdate><volume>71</volume><issue>3</issue><spage>390</spage><epage>401</epage><pages>390-401</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Arabidopsis seedlings display rhythmic growth when grown under diurnal conditions, with maximal elongation rates occurring at the end of the night under short‐day photoperiods. Current evidence indicates that this behavior involves the action of the growth‐promoting bHLH factors PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME‐INTERACTING FACTOR 5 (PIF5) at the end of the night, through a coincidence mechanism that combines their transcriptional regulation by the circadian clock with control of protein accumulation by light. To assess the possible role of PIF3 in this process, we have analyzed hypocotyl responses and marker gene expression in pif single‐ and higher‐order mutants. The data show that PIF3 plays a prominent role as a promoter of seedling growth under diurnal light/dark conditions, in conjunction with PIF4 and PIF5. In addition, we provide evidence that PIF3 functions in this process through its intrinsic transcriptional regulatory activity, at least in part by directly targeting growth‐related genes, and independently of its ability to regulate phytochrome B (phyB) levels. Furthermore, in sharp contrast to PIF4 and PIF5, our data show that the PIF3 gene is not subject to transcriptional regulation by the clock, but that PIF3 protein abundance oscillates under diurnal conditions as a result of a progressive decline in PIF3 protein degradation mediated by photoactivated phyB, and consequent accumulation of the bHLH factor during the dark period. Collectively, the data suggest that phyB‐mediated, post‐translational regulation allows PIF3 accumulation to peak just before dawn, at which time it accelerates hypocotyl growth, together with PIF4 and PIF5, by directly regulating the induction of growth‐related genes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22409654</pmid><doi>10.1111/j.1365-313X.2012.04992.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.390-401
issn 0960-7412
1365-313X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3465574
source MEDLINE; Wiley Journals; Wiley Online Library Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biological and medical sciences
Circadian Clocks
Circadian Rhythm
Darkness
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Plant - physiology
genes
genetic markers
Genomics
Hypocotyl - genetics
Hypocotyl - growth & development
Hypocotyl - physiology
Hypocotyl - radiation effects
hypocotyl elongation
hypocotyls
Light
Molecular and cellular biology
Molecular genetics
mutants
Mutation
Photoperiod
Phytochrome B - genetics
Phytochrome B - metabolism
phytochrome‐mediated degradation
PIF3
Plant growth
Plant physiology and development
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Promoter Regions, Genetic - genetics
protein degradation
Proteins
Proteolysis
scotophase
seedling growth
Seedlings - genetics
Seedlings - growth & development
Seedlings - physiology
Seedlings - radiation effects
short day
Signal Transduction - physiology
transcription (genetics)
Transcription. Transcription factor. Splicing. Rna processing
transcriptional regulation
title Phytochrome‐imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytochrome%E2%80%90imposed%20oscillations%20in%20PIF3%20protein%20abundance%20regulate%20hypocotyl%20growth%20under%20diurnal%20light/dark%20conditions%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Soy,%20Judit&rft.date=2012-08&rft.volume=71&rft.issue=3&rft.spage=390&rft.epage=401&rft.pages=390-401&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2012.04992.x&rft_dat=%3Cproquest_pubme%3E2721715051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027989528&rft_id=info:pmid/22409654&rfr_iscdi=true