Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis

Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-10, Vol.160 (2), p.884-896
Hauptverfasser: Vandesteene, Lies, López-Galvis, Lorena, Vanneste, Kevin, Feil, Regina, Maere, Steven, Lammens, Willem, Rolland, Filip, Lunn, John E., Avonce, Nelson, Beeckman, Tom, Van Dijck, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 2
container_start_page 884
container_title Plant physiology (Bethesda)
container_volume 160
creator Vandesteene, Lies
López-Galvis, Lorena
Vanneste, Kevin
Feil, Regina
Maere, Steven
Lammens, Willem
Rolland, Filip
Lunn, John E.
Avonce, Nelson
Beeckman, Tom
Van Dijck, Patrick
description Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.
doi_str_mv 10.1104/pp.112.201400
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3461562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41694807</jstor_id><sourcerecordid>41694807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</originalsourceid><addsrcrecordid>eNpVkcFr2zAUxsXYaLOuxx03dCns4k56kiz5MjDFbQaBlCWlRyHL8qriWJ7khPW_n0PSbDt9D96P73t8D6GPlFxTSvjXYZgUroFQTsgbNKOCQQaCq7doRsg0E6WKc_Q-pWdCCGWUn6FzACVEwdQMPVa_B9Mnv3O42oVuO_rQ49Di8cnh9Y9qXi6WqyrLs_v5cnU_L9cVfp3KVYXvXO_wrdn47gX7HpfR1L4JQ_LpA3rXmi65y6NeoIfban0zzxbLu-835SKzgqkxY0LWLW9cW4MsiqYpQErpFLRgVU2Mai13REnFCgWWNZYaACqh5pM0Tgl2gb4dfIdtvXGNdf0YTaeH6DcmvuhgvP5_0_sn_TPsNOM5FTlMBl-OBjH82ro06o1P1nWd6V3YJg371oAykBOaHVAbQ0rRtacYSvT-GXoYJgV9eMbEf_73thP92v4EXB0Bk6zp2mh669NfLucgCrUP_nTgntMY4mnPaV5wRST7A0OmmSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000121327</pqid></control><display><type>article</type><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</creator><creatorcontrib>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</creatorcontrib><description>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.201400</identifier><identifier>PMID: 22855938</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>abscisic acid ; Abscisic Acid - pharmacology ; active sites ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Biosynthesis ; Carbohydrate Metabolism ; Catalytic Domain ; Collinearity ; Enzyme Activation ; Enzymes ; evolution ; Evolution, Molecular ; fluorescent proteins ; Fundamental and applied biological sciences. Psychology ; Gene Duplication ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; gene overexpression ; genes ; Genes, Plant ; Genes, Reporter ; Genetic Complementation Test ; GENETICS, GENOMICS, AND MOLECULAR EVOLUTION ; Genomes ; Germination ; glucose 6-phosphate ; Green Fluorescent Proteins - metabolism ; growth and development ; heterologous gene expression ; Multigene Family ; Mutation ; Phenotype ; Phenotypes ; Phosphatases ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Phylogeny ; Plant physiology and development ; Plants ; Pollen - enzymology ; Pollen - genetics ; Promoter Regions, Genetic ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Seeds - drug effects ; Seeds - enzymology ; Sugar Phosphates - metabolism ; Transcriptome ; trehalose ; Trehalose - analogs &amp; derivatives ; Trehalose - metabolism ; trehalose-phosphatase ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2012-10, Vol.160 (2), p.884-896</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All Rights Reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</citedby><cites>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41694807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41694807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26425987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22855938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandesteene, Lies</creatorcontrib><creatorcontrib>López-Galvis, Lorena</creatorcontrib><creatorcontrib>Vanneste, Kevin</creatorcontrib><creatorcontrib>Feil, Regina</creatorcontrib><creatorcontrib>Maere, Steven</creatorcontrib><creatorcontrib>Lammens, Willem</creatorcontrib><creatorcontrib>Rolland, Filip</creatorcontrib><creatorcontrib>Lunn, John E.</creatorcontrib><creatorcontrib>Avonce, Nelson</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Van Dijck, Patrick</creatorcontrib><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</description><subject>abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>active sites</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrate Metabolism</subject><subject>Catalytic Domain</subject><subject>Collinearity</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>fluorescent proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Duplication</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic Complementation Test</subject><subject>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</subject><subject>Genomes</subject><subject>Germination</subject><subject>glucose 6-phosphate</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>growth and development</subject><subject>heterologous gene expression</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphatases</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pollen - enzymology</subject><subject>Pollen - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Seeds - drug effects</subject><subject>Seeds - enzymology</subject><subject>Sugar Phosphates - metabolism</subject><subject>Transcriptome</subject><subject>trehalose</subject><subject>Trehalose - analogs &amp; derivatives</subject><subject>Trehalose - metabolism</subject><subject>trehalose-phosphatase</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFr2zAUxsXYaLOuxx03dCns4k56kiz5MjDFbQaBlCWlRyHL8qriWJ7khPW_n0PSbDt9D96P73t8D6GPlFxTSvjXYZgUroFQTsgbNKOCQQaCq7doRsg0E6WKc_Q-pWdCCGWUn6FzACVEwdQMPVa_B9Mnv3O42oVuO_rQ49Di8cnh9Y9qXi6WqyrLs_v5cnU_L9cVfp3KVYXvXO_wrdn47gX7HpfR1L4JQ_LpA3rXmi65y6NeoIfban0zzxbLu-835SKzgqkxY0LWLW9cW4MsiqYpQErpFLRgVU2Mai13REnFCgWWNZYaACqh5pM0Tgl2gb4dfIdtvXGNdf0YTaeH6DcmvuhgvP5_0_sn_TPsNOM5FTlMBl-OBjH82ro06o1P1nWd6V3YJg371oAykBOaHVAbQ0rRtacYSvT-GXoYJgV9eMbEf_73thP92v4EXB0Bk6zp2mh669NfLucgCrUP_nTgntMY4mnPaV5wRST7A0OmmSg</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Vandesteene, Lies</creator><creator>López-Galvis, Lorena</creator><creator>Vanneste, Kevin</creator><creator>Feil, Regina</creator><creator>Maere, Steven</creator><creator>Lammens, Willem</creator><creator>Rolland, Filip</creator><creator>Lunn, John E.</creator><creator>Avonce, Nelson</creator><creator>Beeckman, Tom</creator><creator>Van Dijck, Patrick</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121001</creationdate><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><author>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>active sites</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrate Metabolism</topic><topic>Catalytic Domain</topic><topic>Collinearity</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>fluorescent proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Duplication</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic Complementation Test</topic><topic>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</topic><topic>Genomes</topic><topic>Germination</topic><topic>glucose 6-phosphate</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>growth and development</topic><topic>heterologous gene expression</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphatases</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pollen - enzymology</topic><topic>Pollen - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Seeds - drug effects</topic><topic>Seeds - enzymology</topic><topic>Sugar Phosphates - metabolism</topic><topic>Transcriptome</topic><topic>trehalose</topic><topic>Trehalose - analogs &amp; derivatives</topic><topic>Trehalose - metabolism</topic><topic>trehalose-phosphatase</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandesteene, Lies</creatorcontrib><creatorcontrib>López-Galvis, Lorena</creatorcontrib><creatorcontrib>Vanneste, Kevin</creatorcontrib><creatorcontrib>Feil, Regina</creatorcontrib><creatorcontrib>Maere, Steven</creatorcontrib><creatorcontrib>Lammens, Willem</creatorcontrib><creatorcontrib>Rolland, Filip</creatorcontrib><creatorcontrib>Lunn, John E.</creatorcontrib><creatorcontrib>Avonce, Nelson</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Van Dijck, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandesteene, Lies</au><au>López-Galvis, Lorena</au><au>Vanneste, Kevin</au><au>Feil, Regina</au><au>Maere, Steven</au><au>Lammens, Willem</au><au>Rolland, Filip</au><au>Lunn, John E.</au><au>Avonce, Nelson</au><au>Beeckman, Tom</au><au>Van Dijck, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>160</volume><issue>2</issue><spage>884</spage><epage>896</epage><pages>884-896</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22855938</pmid><doi>10.1104/pp.112.201400</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-10, Vol.160 (2), p.884-896
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3461562
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects abscisic acid
Abscisic Acid - pharmacology
active sites
Arabidopsis - drug effects
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
Biosynthesis
Carbohydrate Metabolism
Catalytic Domain
Collinearity
Enzyme Activation
Enzymes
evolution
Evolution, Molecular
fluorescent proteins
Fundamental and applied biological sciences. Psychology
Gene Duplication
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
gene overexpression
genes
Genes, Plant
Genes, Reporter
Genetic Complementation Test
GENETICS, GENOMICS, AND MOLECULAR EVOLUTION
Genomes
Germination
glucose 6-phosphate
Green Fluorescent Proteins - metabolism
growth and development
heterologous gene expression
Multigene Family
Mutation
Phenotype
Phenotypes
Phosphatases
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Phylogeny
Plant physiology and development
Plants
Pollen - enzymology
Pollen - genetics
Promoter Regions, Genetic
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Seeds - drug effects
Seeds - enzymology
Sugar Phosphates - metabolism
Transcriptome
trehalose
Trehalose - analogs & derivatives
Trehalose - metabolism
trehalose-phosphatase
Yeasts
title Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansive%20Evolution%20of%20the%20TREHALOSE-6-PHOSPHATE%20PHOSPHATASE%20Gene%20Family%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Vandesteene,%20Lies&rft.date=2012-10-01&rft.volume=160&rft.issue=2&rft.spage=884&rft.epage=896&rft.pages=884-896&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.201400&rft_dat=%3Cjstor_pubme%3E41694807%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000121327&rft_id=info:pmid/22855938&rft_jstor_id=41694807&rfr_iscdi=true