Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis
Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2012-10, Vol.160 (2), p.884-896 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 2 |
container_start_page | 884 |
container_title | Plant physiology (Bethesda) |
container_volume | 160 |
creator | Vandesteene, Lies López-Galvis, Lorena Vanneste, Kevin Feil, Regina Maere, Steven Lammens, Willem Rolland, Filip Lunn, John E. Avonce, Nelson Beeckman, Tom Van Dijck, Patrick |
description | Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling. |
doi_str_mv | 10.1104/pp.112.201400 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3461562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41694807</jstor_id><sourcerecordid>41694807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</originalsourceid><addsrcrecordid>eNpVkcFr2zAUxsXYaLOuxx03dCns4k56kiz5MjDFbQaBlCWlRyHL8qriWJ7khPW_n0PSbDt9D96P73t8D6GPlFxTSvjXYZgUroFQTsgbNKOCQQaCq7doRsg0E6WKc_Q-pWdCCGWUn6FzACVEwdQMPVa_B9Mnv3O42oVuO_rQ49Di8cnh9Y9qXi6WqyrLs_v5cnU_L9cVfp3KVYXvXO_wrdn47gX7HpfR1L4JQ_LpA3rXmi65y6NeoIfban0zzxbLu-835SKzgqkxY0LWLW9cW4MsiqYpQErpFLRgVU2Mai13REnFCgWWNZYaACqh5pM0Tgl2gb4dfIdtvXGNdf0YTaeH6DcmvuhgvP5_0_sn_TPsNOM5FTlMBl-OBjH82ro06o1P1nWd6V3YJg371oAykBOaHVAbQ0rRtacYSvT-GXoYJgV9eMbEf_73thP92v4EXB0Bk6zp2mh669NfLucgCrUP_nTgntMY4mnPaV5wRST7A0OmmSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000121327</pqid></control><display><type>article</type><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</creator><creatorcontrib>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</creatorcontrib><description>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.201400</identifier><identifier>PMID: 22855938</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>abscisic acid ; Abscisic Acid - pharmacology ; active sites ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Biosynthesis ; Carbohydrate Metabolism ; Catalytic Domain ; Collinearity ; Enzyme Activation ; Enzymes ; evolution ; Evolution, Molecular ; fluorescent proteins ; Fundamental and applied biological sciences. Psychology ; Gene Duplication ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; gene overexpression ; genes ; Genes, Plant ; Genes, Reporter ; Genetic Complementation Test ; GENETICS, GENOMICS, AND MOLECULAR EVOLUTION ; Genomes ; Germination ; glucose 6-phosphate ; Green Fluorescent Proteins - metabolism ; growth and development ; heterologous gene expression ; Multigene Family ; Mutation ; Phenotype ; Phenotypes ; Phosphatases ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Phylogeny ; Plant physiology and development ; Plants ; Pollen - enzymology ; Pollen - genetics ; Promoter Regions, Genetic ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Seeds - drug effects ; Seeds - enzymology ; Sugar Phosphates - metabolism ; Transcriptome ; trehalose ; Trehalose - analogs & derivatives ; Trehalose - metabolism ; trehalose-phosphatase ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2012-10, Vol.160 (2), p.884-896</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All Rights Reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</citedby><cites>FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41694807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41694807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26425987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22855938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandesteene, Lies</creatorcontrib><creatorcontrib>López-Galvis, Lorena</creatorcontrib><creatorcontrib>Vanneste, Kevin</creatorcontrib><creatorcontrib>Feil, Regina</creatorcontrib><creatorcontrib>Maere, Steven</creatorcontrib><creatorcontrib>Lammens, Willem</creatorcontrib><creatorcontrib>Rolland, Filip</creatorcontrib><creatorcontrib>Lunn, John E.</creatorcontrib><creatorcontrib>Avonce, Nelson</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Van Dijck, Patrick</creatorcontrib><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</description><subject>abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>active sites</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrate Metabolism</subject><subject>Catalytic Domain</subject><subject>Collinearity</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>fluorescent proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Duplication</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic Complementation Test</subject><subject>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</subject><subject>Genomes</subject><subject>Germination</subject><subject>glucose 6-phosphate</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>growth and development</subject><subject>heterologous gene expression</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphatases</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pollen - enzymology</subject><subject>Pollen - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Seeds - drug effects</subject><subject>Seeds - enzymology</subject><subject>Sugar Phosphates - metabolism</subject><subject>Transcriptome</subject><subject>trehalose</subject><subject>Trehalose - analogs & derivatives</subject><subject>Trehalose - metabolism</subject><subject>trehalose-phosphatase</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFr2zAUxsXYaLOuxx03dCns4k56kiz5MjDFbQaBlCWlRyHL8qriWJ7khPW_n0PSbDt9D96P73t8D6GPlFxTSvjXYZgUroFQTsgbNKOCQQaCq7doRsg0E6WKc_Q-pWdCCGWUn6FzACVEwdQMPVa_B9Mnv3O42oVuO_rQ49Di8cnh9Y9qXi6WqyrLs_v5cnU_L9cVfp3KVYXvXO_wrdn47gX7HpfR1L4JQ_LpA3rXmi65y6NeoIfban0zzxbLu-835SKzgqkxY0LWLW9cW4MsiqYpQErpFLRgVU2Mai13REnFCgWWNZYaACqh5pM0Tgl2gb4dfIdtvXGNdf0YTaeH6DcmvuhgvP5_0_sn_TPsNOM5FTlMBl-OBjH82ro06o1P1nWd6V3YJg371oAykBOaHVAbQ0rRtacYSvT-GXoYJgV9eMbEf_73thP92v4EXB0Bk6zp2mh669NfLucgCrUP_nTgntMY4mnPaV5wRST7A0OmmSg</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Vandesteene, Lies</creator><creator>López-Galvis, Lorena</creator><creator>Vanneste, Kevin</creator><creator>Feil, Regina</creator><creator>Maere, Steven</creator><creator>Lammens, Willem</creator><creator>Rolland, Filip</creator><creator>Lunn, John E.</creator><creator>Avonce, Nelson</creator><creator>Beeckman, Tom</creator><creator>Van Dijck, Patrick</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121001</creationdate><title>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</title><author>Vandesteene, Lies ; López-Galvis, Lorena ; Vanneste, Kevin ; Feil, Regina ; Maere, Steven ; Lammens, Willem ; Rolland, Filip ; Lunn, John E. ; Avonce, Nelson ; Beeckman, Tom ; Van Dijck, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-357bf4defb2799dd92777e82f2c8b0a8fc4e08783982c3dc1a22172b4221de853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>active sites</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrate Metabolism</topic><topic>Catalytic Domain</topic><topic>Collinearity</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>fluorescent proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Duplication</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic Complementation Test</topic><topic>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</topic><topic>Genomes</topic><topic>Germination</topic><topic>glucose 6-phosphate</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>growth and development</topic><topic>heterologous gene expression</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphatases</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pollen - enzymology</topic><topic>Pollen - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Seeds - drug effects</topic><topic>Seeds - enzymology</topic><topic>Sugar Phosphates - metabolism</topic><topic>Transcriptome</topic><topic>trehalose</topic><topic>Trehalose - analogs & derivatives</topic><topic>Trehalose - metabolism</topic><topic>trehalose-phosphatase</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandesteene, Lies</creatorcontrib><creatorcontrib>López-Galvis, Lorena</creatorcontrib><creatorcontrib>Vanneste, Kevin</creatorcontrib><creatorcontrib>Feil, Regina</creatorcontrib><creatorcontrib>Maere, Steven</creatorcontrib><creatorcontrib>Lammens, Willem</creatorcontrib><creatorcontrib>Rolland, Filip</creatorcontrib><creatorcontrib>Lunn, John E.</creatorcontrib><creatorcontrib>Avonce, Nelson</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Van Dijck, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandesteene, Lies</au><au>López-Galvis, Lorena</au><au>Vanneste, Kevin</au><au>Feil, Regina</au><au>Maere, Steven</au><au>Lammens, Willem</au><au>Rolland, Filip</au><au>Lunn, John E.</au><au>Avonce, Nelson</au><au>Beeckman, Tom</au><au>Van Dijck, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>160</volume><issue>2</issue><spage>884</spage><epage>896</epage><pages>884-896</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDPglucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS-and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from wholegenome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-jS-glucuronidase/green fluorescent protein reporter lines further uncovered cell-and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22855938</pmid><doi>10.1104/pp.112.201400</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-10, Vol.160 (2), p.884-896 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3461562 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | abscisic acid Abscisic Acid - pharmacology active sites Arabidopsis - drug effects Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences Biosynthesis Carbohydrate Metabolism Catalytic Domain Collinearity Enzyme Activation Enzymes evolution Evolution, Molecular fluorescent proteins Fundamental and applied biological sciences. Psychology Gene Duplication Gene Expression Regulation, Enzymologic Gene Expression Regulation, Plant gene overexpression genes Genes, Plant Genes, Reporter Genetic Complementation Test GENETICS, GENOMICS, AND MOLECULAR EVOLUTION Genomes Germination glucose 6-phosphate Green Fluorescent Proteins - metabolism growth and development heterologous gene expression Multigene Family Mutation Phenotype Phenotypes Phosphatases Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Phylogeny Plant physiology and development Plants Pollen - enzymology Pollen - genetics Promoter Regions, Genetic Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Seeds - drug effects Seeds - enzymology Sugar Phosphates - metabolism Transcriptome trehalose Trehalose - analogs & derivatives Trehalose - metabolism trehalose-phosphatase Yeasts |
title | Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansive%20Evolution%20of%20the%20TREHALOSE-6-PHOSPHATE%20PHOSPHATASE%20Gene%20Family%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Vandesteene,%20Lies&rft.date=2012-10-01&rft.volume=160&rft.issue=2&rft.spage=884&rft.epage=896&rft.pages=884-896&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.201400&rft_dat=%3Cjstor_pubme%3E41694807%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000121327&rft_id=info:pmid/22855938&rft_jstor_id=41694807&rfr_iscdi=true |