Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment

The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2012-09, Vol.120 (13), p.2679-2689
Hauptverfasser: Zeng, Zhihong, Shi, Yue Xi, Tsao, Twee, Qiu, YiHua, Kornblau, Steven M., Baggerly, Keith A., Liu, Wenbin, Jessen, Katti, Liu, Yi, Kantarjian, Hagop, Rommel, Christian, Fruman, David A., Andreeff, Michael, Konopleva, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2689
container_issue 13
container_start_page 2679
container_title Blood
container_volume 120
creator Zeng, Zhihong
Shi, Yue Xi
Tsao, Twee
Qiu, YiHua
Kornblau, Steven M.
Baggerly, Keith A.
Liu, Wenbin
Jessen, Katti
Liu, Yi
Kantarjian, Hagop
Rommel, Christian
Fruman, David A.
Andreeff, Michael
Konopleva, Marina
description The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.
doi_str_mv 10.1182/blood-2011-11-393934
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3460689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120463724</els_id><sourcerecordid>22826565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-f0ed8869f7847e3f47de01197945d7ad97dd6dcc9540a8eceeb39ce0388004463</originalsourceid><addsrcrecordid>eNp9Ud1uFCEYJUZj1-obGMMLjAWGmYEbk2aj1mRNG7NeEwa-2f3sDGxgdps-hy9ctqtVbwwk5PDl_MAh5C1n7zlX4qIfY_SVYJxXZde6LPmMLHgjVMWYYM_JgjHWVlJ3_Iy8yvkHY1zWonlJzoRQom3aZkF-rm3awIxhQ-NAp_X1tyW_ELS_p_MWHjG9xWAzUAxb7HGOid7cCCkK9nsHmdpd3M0xYy439PLrijoYx0z3wUOiLgaPM8aQ6YQTutuj0VG5j6HI25TiXZm4FCEcMMUwQZhfkxeDHTO8-XWek--fPq6XV9Xq-vOX5eWqco3QczUw8Eq1euiU7KAeZOeh_IbutGx8Z73uvG-9c7qRzCpwAH2tHbBaKcakbOtz8uGku9v3E3hXrJMdzS5hCXZvokXz7yTg1mziwdSyZa3SRUCeBEr-nBMMT1zOzLEk81iSOZZUsDmVVGjv_vZ9Iv1u5U8wKK8_ICSTHUJw4DGBm42P-H-HB61bpr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zeng, Zhihong ; Shi, Yue Xi ; Tsao, Twee ; Qiu, YiHua ; Kornblau, Steven M. ; Baggerly, Keith A. ; Liu, Wenbin ; Jessen, Katti ; Liu, Yi ; Kantarjian, Hagop ; Rommel, Christian ; Fruman, David A. ; Andreeff, Michael ; Konopleva, Marina</creator><creatorcontrib>Zeng, Zhihong ; Shi, Yue Xi ; Tsao, Twee ; Qiu, YiHua ; Kornblau, Steven M. ; Baggerly, Keith A. ; Liu, Wenbin ; Jessen, Katti ; Liu, Yi ; Kantarjian, Hagop ; Rommel, Christian ; Fruman, David A. ; Andreeff, Michael ; Konopleva, Marina</creatorcontrib><description>The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2011-11-393934</identifier><identifier>PMID: 22826565</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antibiotics, Antineoplastic - therapeutic use ; Antineoplastic Combined Chemotherapy Protocols ; Apoptosis - drug effects ; Blotting, Western ; Bone Marrow - metabolism ; Bone Marrow - pathology ; Cell Proliferation ; Coculture Techniques ; Flow Cytometry ; Humans ; Indoles - therapeutic use ; Leukemia, Experimental - mortality ; Leukemia, Experimental - pathology ; Leukemia, Experimental - prevention &amp; control ; Leukemia, Myeloid, Acute - mortality ; Leukemia, Myeloid, Acute - pathology ; Leukemia, Myeloid, Acute - prevention &amp; control ; Mechanistic Target of Rapamycin Complex 1 ; Mechanistic Target of Rapamycin Complex 2 ; Mesenchymal Stem Cells - metabolism ; Mesenchymal Stem Cells - pathology ; Mice ; Mice, SCID ; Multiprotein Complexes - antagonists &amp; inhibitors ; Multiprotein Complexes - metabolism ; Myeloid Neoplasia ; Phosphorylation - drug effects ; Protein Array Analysis ; Protein Kinase Inhibitors - pharmacology ; Purines - therapeutic use ; Real-Time Polymerase Chain Reaction ; Receptors, CXCR4 - genetics ; Receptors, CXCR4 - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Signal Transduction - drug effects ; Sirolimus - therapeutic use ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Blood, 2012-09, Vol.120 (13), p.2679-2689</ispartof><rights>2012 American Society of Hematology</rights><rights>2012 by The American Society of Hematology 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-f0ed8869f7847e3f47de01197945d7ad97dd6dcc9540a8eceeb39ce0388004463</citedby><cites>FETCH-LOGICAL-c529t-f0ed8869f7847e3f47de01197945d7ad97dd6dcc9540a8eceeb39ce0388004463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22826565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Shi, Yue Xi</creatorcontrib><creatorcontrib>Tsao, Twee</creatorcontrib><creatorcontrib>Qiu, YiHua</creatorcontrib><creatorcontrib>Kornblau, Steven M.</creatorcontrib><creatorcontrib>Baggerly, Keith A.</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><creatorcontrib>Jessen, Katti</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Kantarjian, Hagop</creatorcontrib><creatorcontrib>Rommel, Christian</creatorcontrib><creatorcontrib>Fruman, David A.</creatorcontrib><creatorcontrib>Andreeff, Michael</creatorcontrib><creatorcontrib>Konopleva, Marina</creatorcontrib><title>Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment</title><title>Blood</title><addtitle>Blood</addtitle><description>The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.</description><subject>Animals</subject><subject>Antibiotics, Antineoplastic - therapeutic use</subject><subject>Antineoplastic Combined Chemotherapy Protocols</subject><subject>Apoptosis - drug effects</subject><subject>Blotting, Western</subject><subject>Bone Marrow - metabolism</subject><subject>Bone Marrow - pathology</subject><subject>Cell Proliferation</subject><subject>Coculture Techniques</subject><subject>Flow Cytometry</subject><subject>Humans</subject><subject>Indoles - therapeutic use</subject><subject>Leukemia, Experimental - mortality</subject><subject>Leukemia, Experimental - pathology</subject><subject>Leukemia, Experimental - prevention &amp; control</subject><subject>Leukemia, Myeloid, Acute - mortality</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Leukemia, Myeloid, Acute - prevention &amp; control</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchymal Stem Cells - pathology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Multiprotein Complexes - antagonists &amp; inhibitors</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Myeloid Neoplasia</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Array Analysis</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Purines - therapeutic use</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptors, CXCR4 - genetics</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction - drug effects</subject><subject>Sirolimus - therapeutic use</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Ud1uFCEYJUZj1-obGMMLjAWGmYEbk2aj1mRNG7NeEwa-2f3sDGxgdps-hy9ctqtVbwwk5PDl_MAh5C1n7zlX4qIfY_SVYJxXZde6LPmMLHgjVMWYYM_JgjHWVlJ3_Iy8yvkHY1zWonlJzoRQom3aZkF-rm3awIxhQ-NAp_X1tyW_ELS_p_MWHjG9xWAzUAxb7HGOid7cCCkK9nsHmdpd3M0xYy439PLrijoYx0z3wUOiLgaPM8aQ6YQTutuj0VG5j6HI25TiXZm4FCEcMMUwQZhfkxeDHTO8-XWek--fPq6XV9Xq-vOX5eWqco3QczUw8Eq1euiU7KAeZOeh_IbutGx8Z73uvG-9c7qRzCpwAH2tHbBaKcakbOtz8uGku9v3E3hXrJMdzS5hCXZvokXz7yTg1mziwdSyZa3SRUCeBEr-nBMMT1zOzLEk81iSOZZUsDmVVGjv_vZ9Iv1u5U8wKK8_ICSTHUJw4DGBm42P-H-HB61bpr8</recordid><startdate>20120927</startdate><enddate>20120927</enddate><creator>Zeng, Zhihong</creator><creator>Shi, Yue Xi</creator><creator>Tsao, Twee</creator><creator>Qiu, YiHua</creator><creator>Kornblau, Steven M.</creator><creator>Baggerly, Keith A.</creator><creator>Liu, Wenbin</creator><creator>Jessen, Katti</creator><creator>Liu, Yi</creator><creator>Kantarjian, Hagop</creator><creator>Rommel, Christian</creator><creator>Fruman, David A.</creator><creator>Andreeff, Michael</creator><creator>Konopleva, Marina</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120927</creationdate><title>Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment</title><author>Zeng, Zhihong ; Shi, Yue Xi ; Tsao, Twee ; Qiu, YiHua ; Kornblau, Steven M. ; Baggerly, Keith A. ; Liu, Wenbin ; Jessen, Katti ; Liu, Yi ; Kantarjian, Hagop ; Rommel, Christian ; Fruman, David A. ; Andreeff, Michael ; Konopleva, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-f0ed8869f7847e3f47de01197945d7ad97dd6dcc9540a8eceeb39ce0388004463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antibiotics, Antineoplastic - therapeutic use</topic><topic>Antineoplastic Combined Chemotherapy Protocols</topic><topic>Apoptosis - drug effects</topic><topic>Blotting, Western</topic><topic>Bone Marrow - metabolism</topic><topic>Bone Marrow - pathology</topic><topic>Cell Proliferation</topic><topic>Coculture Techniques</topic><topic>Flow Cytometry</topic><topic>Humans</topic><topic>Indoles - therapeutic use</topic><topic>Leukemia, Experimental - mortality</topic><topic>Leukemia, Experimental - pathology</topic><topic>Leukemia, Experimental - prevention &amp; control</topic><topic>Leukemia, Myeloid, Acute - mortality</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Leukemia, Myeloid, Acute - prevention &amp; control</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchymal Stem Cells - pathology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Multiprotein Complexes - antagonists &amp; inhibitors</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Myeloid Neoplasia</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Array Analysis</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Purines - therapeutic use</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptors, CXCR4 - genetics</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction - drug effects</topic><topic>Sirolimus - therapeutic use</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Shi, Yue Xi</creatorcontrib><creatorcontrib>Tsao, Twee</creatorcontrib><creatorcontrib>Qiu, YiHua</creatorcontrib><creatorcontrib>Kornblau, Steven M.</creatorcontrib><creatorcontrib>Baggerly, Keith A.</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><creatorcontrib>Jessen, Katti</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Kantarjian, Hagop</creatorcontrib><creatorcontrib>Rommel, Christian</creatorcontrib><creatorcontrib>Fruman, David A.</creatorcontrib><creatorcontrib>Andreeff, Michael</creatorcontrib><creatorcontrib>Konopleva, Marina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Zhihong</au><au>Shi, Yue Xi</au><au>Tsao, Twee</au><au>Qiu, YiHua</au><au>Kornblau, Steven M.</au><au>Baggerly, Keith A.</au><au>Liu, Wenbin</au><au>Jessen, Katti</au><au>Liu, Yi</au><au>Kantarjian, Hagop</au><au>Rommel, Christian</au><au>Fruman, David A.</au><au>Andreeff, Michael</au><au>Konopleva, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2012-09-27</date><risdate>2012</risdate><volume>120</volume><issue>13</issue><spage>2679</spage><epage>2689</epage><pages>2679-2689</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22826565</pmid><doi>10.1182/blood-2011-11-393934</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2012-09, Vol.120 (13), p.2679-2689
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3460689
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antibiotics, Antineoplastic - therapeutic use
Antineoplastic Combined Chemotherapy Protocols
Apoptosis - drug effects
Blotting, Western
Bone Marrow - metabolism
Bone Marrow - pathology
Cell Proliferation
Coculture Techniques
Flow Cytometry
Humans
Indoles - therapeutic use
Leukemia, Experimental - mortality
Leukemia, Experimental - pathology
Leukemia, Experimental - prevention & control
Leukemia, Myeloid, Acute - mortality
Leukemia, Myeloid, Acute - pathology
Leukemia, Myeloid, Acute - prevention & control
Mechanistic Target of Rapamycin Complex 1
Mechanistic Target of Rapamycin Complex 2
Mesenchymal Stem Cells - metabolism
Mesenchymal Stem Cells - pathology
Mice
Mice, SCID
Multiprotein Complexes - antagonists & inhibitors
Multiprotein Complexes - metabolism
Myeloid Neoplasia
Phosphorylation - drug effects
Protein Array Analysis
Protein Kinase Inhibitors - pharmacology
Purines - therapeutic use
Real-Time Polymerase Chain Reaction
Receptors, CXCR4 - genetics
Receptors, CXCR4 - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Signal Transduction - drug effects
Sirolimus - therapeutic use
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - metabolism
title Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20of%20mTORC1/2%20by%20the%20mTOR%20kinase%20inhibitor%20PP242%20induces%20apoptosis%20in%20AML%20cells%20under%20conditions%20mimicking%20the%20bone%20marrow%20microenvironment&rft.jtitle=Blood&rft.au=Zeng,%20Zhihong&rft.date=2012-09-27&rft.volume=120&rft.issue=13&rft.spage=2679&rft.epage=2689&rft.pages=2679-2689&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2011-11-393934&rft_dat=%3Cpubmed_cross%3E22826565%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22826565&rft_els_id=S0006497120463724&rfr_iscdi=true