Overview of Base Excision Repair Biochemistry

Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current molecular pharmacology 2012-01, Vol.5 (1), p.3-13
Hauptverfasser: Kim, Yun-Jeong, Wilson, 3rd, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 3
container_title Current molecular pharmacology
container_volume 5
creator Kim, Yun-Jeong
Wilson, 3rd, David M
description Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
doi_str_mv 10.2174/1874467211205010003
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3459583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22122461</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4083-f13289746d53bc093917e338c461bc799eaa6a0b32d4f8b2b5e1ba7dbf8844f3</originalsourceid><addsrcrecordid>eNptUNtq3DAQFaUhSZN8QaH4B5zqZst-KXSXbRoIBELeB0k7Xqu1LSPZu9m3fnq1bLKk0Kc5zJzLcAj5zOgtZ0p-ZZWSslScMU4Lyiil4gO5PGxzqSj_-IYT5YJ8ivEXpSVXrDgnF5wzzmXJLkn-uMWwdbjLfJMtdMRs9WJddH7InnDULmQL522LvYtT2F-Ts0Z3EW9e5xV5_rF6Xv7MHx7v7pffH3IjaSXyhgle1UqW60IYS2tRM4VCVDZFGqvqGrUuNTWCr2VTGW4KZEartWmqSspGXJFvR9txNj2uLQ5T0B2MwfU67MFrB_9eBtfCxm9ByKIuKpEMxNHABh9jwOakZRQO5cF_ykuqL-9jT5q3thLhz5FgUm6r-2gdDhZPxHaaRtjtdoBzwN-pzA7tBNb34Ecc5tAlPExJC2M7wgaHgKDD5GyH4GIcTl_B1ndzj1Ac1jMCgzjqDYIQfwGWLJwR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Overview of Base Excision Repair Biochemistry</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><creator>Kim, Yun-Jeong ; Wilson, 3rd, David M</creator><creatorcontrib>Kim, Yun-Jeong ; Wilson, 3rd, David M</creatorcontrib><description>Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.</description><identifier>ISSN: 1874-4672</identifier><identifier>EISSN: 1874-4702</identifier><identifier>DOI: 10.2174/1874467211205010003</identifier><identifier>PMID: 22122461</identifier><language>eng</language><publisher>United Arab Emirates: Bentham Science Publishers Ltd</publisher><subject>Antineoplastic Agents - therapeutic use ; DNA Glycosylases - genetics ; DNA Glycosylases - metabolism ; DNA Ligases - metabolism ; DNA Polymerase beta - metabolism ; DNA Repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; Humans ; Neoplasms - drug therapy ; Poly(ADP-ribose) Polymerases - metabolism ; Substrate Specificity</subject><ispartof>Current molecular pharmacology, 2012-01, Vol.5 (1), p.3-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4083-f13289746d53bc093917e338c461bc799eaa6a0b32d4f8b2b5e1ba7dbf8844f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22122461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yun-Jeong</creatorcontrib><creatorcontrib>Wilson, 3rd, David M</creatorcontrib><title>Overview of Base Excision Repair Biochemistry</title><title>Current molecular pharmacology</title><addtitle>CMP</addtitle><description>Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.</description><subject>Antineoplastic Agents - therapeutic use</subject><subject>DNA Glycosylases - genetics</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA Ligases - metabolism</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>Humans</subject><subject>Neoplasms - drug therapy</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Substrate Specificity</subject><issn>1874-4672</issn><issn>1874-4702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptUNtq3DAQFaUhSZN8QaH4B5zqZst-KXSXbRoIBELeB0k7Xqu1LSPZu9m3fnq1bLKk0Kc5zJzLcAj5zOgtZ0p-ZZWSslScMU4Lyiil4gO5PGxzqSj_-IYT5YJ8ivEXpSVXrDgnF5wzzmXJLkn-uMWwdbjLfJMtdMRs9WJddH7InnDULmQL522LvYtT2F-Ts0Z3EW9e5xV5_rF6Xv7MHx7v7pffH3IjaSXyhgle1UqW60IYS2tRM4VCVDZFGqvqGrUuNTWCr2VTGW4KZEartWmqSspGXJFvR9txNj2uLQ5T0B2MwfU67MFrB_9eBtfCxm9ByKIuKpEMxNHABh9jwOakZRQO5cF_ykuqL-9jT5q3thLhz5FgUm6r-2gdDhZPxHaaRtjtdoBzwN-pzA7tBNb34Ecc5tAlPExJC2M7wgaHgKDD5GyH4GIcTl_B1ndzj1Ac1jMCgzjqDYIQfwGWLJwR</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kim, Yun-Jeong</creator><creator>Wilson, 3rd, David M</creator><general>Bentham Science Publishers Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Overview of Base Excision Repair Biochemistry</title><author>Kim, Yun-Jeong ; Wilson, 3rd, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4083-f13289746d53bc093917e338c461bc799eaa6a0b32d4f8b2b5e1ba7dbf8844f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antineoplastic Agents - therapeutic use</topic><topic>DNA Glycosylases - genetics</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA Ligases - metabolism</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>Humans</topic><topic>Neoplasms - drug therapy</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yun-Jeong</creatorcontrib><creatorcontrib>Wilson, 3rd, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yun-Jeong</au><au>Wilson, 3rd, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of Base Excision Repair Biochemistry</atitle><jtitle>Current molecular pharmacology</jtitle><addtitle>CMP</addtitle><date>2012-01</date><risdate>2012</risdate><volume>5</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1874-4672</issn><eissn>1874-4702</eissn><abstract>Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.</abstract><cop>United Arab Emirates</cop><pub>Bentham Science Publishers Ltd</pub><pmid>22122461</pmid><doi>10.2174/1874467211205010003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-4672
ispartof Current molecular pharmacology, 2012-01, Vol.5 (1), p.3-13
issn 1874-4672
1874-4702
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3459583
source MEDLINE; IngentaConnect Free/Open Access Journals
subjects Antineoplastic Agents - therapeutic use
DNA Glycosylases - genetics
DNA Glycosylases - metabolism
DNA Ligases - metabolism
DNA Polymerase beta - metabolism
DNA Repair
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
Humans
Neoplasms - drug therapy
Poly(ADP-ribose) Polymerases - metabolism
Substrate Specificity
title Overview of Base Excision Repair Biochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20Base%20Excision%20Repair%20Biochemistry&rft.jtitle=Current%20molecular%20pharmacology&rft.au=Kim,%20Yun-Jeong&rft.date=2012-01&rft.volume=5&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1874-4672&rft.eissn=1874-4702&rft_id=info:doi/10.2174/1874467211205010003&rft_dat=%3Cpubmed_cross%3E22122461%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22122461&rfr_iscdi=true