Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria
Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 p...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2001-05, Vol.12 (5), p.1189-1198 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1198 |
---|---|
container_issue | 5 |
container_start_page | 1189 |
container_title | Molecular biology of the cell |
container_volume | 12 |
creator | Rapaport, D Taylor, R D Käser, M Langer, T Neupert, W Nargang, F E |
description | Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex. |
doi_str_mv | 10.1091/mbc.12.5.1189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_34577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70865168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e850d9dbea67c8d762255dfa2f2e178c6ef1bc3598287f1c6d6783ad9cd5edc63</originalsourceid><addsrcrecordid>eNpVUctuFTEMjRCIlsKSLcqK3VzizOQlsUEVL6moCy47pCiTeNqgyeQ2mUHt35PSKx4rW_Y59rEPIS-B7YAZeJNGvwO-EzsAbR6RUzC96Qah5eOWM2E6EHw4Ic9q_cEYDINUT8kJQC-MAXFKvn9dy-bXrbiZFrzZYsGEy1ppnug-p4HRKRfqasU0znc0Lmumh4J4G-salyu6v_xCfU6HGW_xNynFNfvrvIQS3XPyZHJzxRfHeEa-fXi_P__UXVx-_Hz-7qLzA_C1Qy1YMGFEJ5XXQUnOhQiT4xNHUNpLnGD0TbHmWk3gZZBK9y4YHwQGL_sz8vZh7mEbU6u0A9o99lBicuXOZhft_50lXtur_NP2g1Cq0V8f6SXfbFhXm2L1OM9uwbxVq5iWAqRuwO4B6EuuteD0ZwUwe--GbW5Y4FbYezca_tW_uv6ij-_vfwHghYmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70865168</pqid></control><display><type>article</type><title>Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rapaport, D ; Taylor, R D ; Käser, M ; Langer, T ; Neupert, W ; Nargang, F E</creator><contributor>Craig, Elizabeth</contributor><creatorcontrib>Rapaport, D ; Taylor, R D ; Käser, M ; Langer, T ; Neupert, W ; Nargang, F E ; Craig, Elizabeth</creatorcontrib><description>Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.12.5.1189</identifier><identifier>PMID: 11359915</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Amino Acid Sequence ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Immunoblotting ; Intracellular Membranes - chemistry ; Intracellular Membranes - metabolism ; Macromolecular Substances ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membrane Transport Proteins ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins ; Molecular Sequence Data ; Mutation ; Neurospora crassa - genetics ; Neurospora crassa - metabolism ; Neurospora crassa - ultrastructure ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Temperature</subject><ispartof>Molecular biology of the cell, 2001-05, Vol.12 (5), p.1189-1198</ispartof><rights>Copyright © 2001, The American Society for Cell Biology 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e850d9dbea67c8d762255dfa2f2e178c6ef1bc3598287f1c6d6783ad9cd5edc63</citedby><cites>FETCH-LOGICAL-c412t-e850d9dbea67c8d762255dfa2f2e178c6ef1bc3598287f1c6d6783ad9cd5edc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC34577/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC34577/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11359915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Craig, Elizabeth</contributor><creatorcontrib>Rapaport, D</creatorcontrib><creatorcontrib>Taylor, R D</creatorcontrib><creatorcontrib>Käser, M</creatorcontrib><creatorcontrib>Langer, T</creatorcontrib><creatorcontrib>Neupert, W</creatorcontrib><creatorcontrib>Nargang, F E</creatorcontrib><title>Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.</description><subject>Amino Acid Sequence</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Immunoblotting</subject><subject>Intracellular Membranes - chemistry</subject><subject>Intracellular Membranes - metabolism</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - metabolism</subject><subject>Neurospora crassa - ultrastructure</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Alignment</subject><subject>Temperature</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctuFTEMjRCIlsKSLcqK3VzizOQlsUEVL6moCy47pCiTeNqgyeQ2mUHt35PSKx4rW_Y59rEPIS-B7YAZeJNGvwO-EzsAbR6RUzC96Qah5eOWM2E6EHw4Ic9q_cEYDINUT8kJQC-MAXFKvn9dy-bXrbiZFrzZYsGEy1ppnug-p4HRKRfqasU0znc0Lmumh4J4G-salyu6v_xCfU6HGW_xNynFNfvrvIQS3XPyZHJzxRfHeEa-fXi_P__UXVx-_Hz-7qLzA_C1Qy1YMGFEJ5XXQUnOhQiT4xNHUNpLnGD0TbHmWk3gZZBK9y4YHwQGL_sz8vZh7mEbU6u0A9o99lBicuXOZhft_50lXtur_NP2g1Cq0V8f6SXfbFhXm2L1OM9uwbxVq5iWAqRuwO4B6EuuteD0ZwUwe--GbW5Y4FbYezca_tW_uv6ij-_vfwHghYmg</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Rapaport, D</creator><creator>Taylor, R D</creator><creator>Käser, M</creator><creator>Langer, T</creator><creator>Neupert, W</creator><creator>Nargang, F E</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010501</creationdate><title>Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria</title><author>Rapaport, D ; Taylor, R D ; Käser, M ; Langer, T ; Neupert, W ; Nargang, F E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e850d9dbea67c8d762255dfa2f2e178c6ef1bc3598287f1c6d6783ad9cd5edc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Immunoblotting</topic><topic>Intracellular Membranes - chemistry</topic><topic>Intracellular Membranes - metabolism</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - metabolism</topic><topic>Neurospora crassa - ultrastructure</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Alignment</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapaport, D</creatorcontrib><creatorcontrib>Taylor, R D</creatorcontrib><creatorcontrib>Käser, M</creatorcontrib><creatorcontrib>Langer, T</creatorcontrib><creatorcontrib>Neupert, W</creatorcontrib><creatorcontrib>Nargang, F E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapaport, D</au><au>Taylor, R D</au><au>Käser, M</au><au>Langer, T</au><au>Neupert, W</au><au>Nargang, F E</au><au>Craig, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>12</volume><issue>5</issue><spage>1189</spage><epage>1198</epage><pages>1189-1198</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>11359915</pmid><doi>10.1091/mbc.12.5.1189</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2001-05, Vol.12 (5), p.1189-1198 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_34577 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Immunoblotting Intracellular Membranes - chemistry Intracellular Membranes - metabolism Macromolecular Substances Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Membrane Transport Proteins Mitochondria - metabolism Mitochondrial Membrane Transport Proteins Molecular Sequence Data Mutation Neurospora crassa - genetics Neurospora crassa - metabolism Neurospora crassa - ultrastructure Protein Precursors - genetics Protein Precursors - metabolism Protein Structure, Tertiary Saccharomyces cerevisiae Proteins Sequence Alignment Temperature |
title | Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20requirements%20of%20Tom40%20for%20assembly%20into%20preexisting%20TOM%20complexes%20of%20mitochondria&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Rapaport,%20D&rft.date=2001-05-01&rft.volume=12&rft.issue=5&rft.spage=1189&rft.epage=1198&rft.pages=1189-1198&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.12.5.1189&rft_dat=%3Cproquest_pubme%3E70865168%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70865168&rft_id=info:pmid/11359915&rfr_iscdi=true |