Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements
The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic...
Gespeichert in:
Veröffentlicht in: | Journal of biological physics 2004-01, Vol.30 (3), p.239-259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 3 |
container_start_page | 239 |
container_title | Journal of biological physics |
container_volume | 30 |
creator | Irimia, Andrei Beauchamp, John J Bradshaw, L Alan |
description | The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic field in the stomach and a computational implementation whereby we demonstrate its realism and usefulness. The computational algorithm developed for this purpose consists of dividing the magnetic field signal input surface into centroid-based grids that allow recursive least-squares approximations to be applied, followed by comparison tests in which the locations of the best-fitting current dipoles are determined. In the second part of the article, we develop a multiple-regression analysis of experimental gastric magnetic data collected using Superconducting QUantum Interference Device (SQUID) magnetometers and successfully processed using our algorithm. As a result of our analysis, we conclude on statistical grounds that it is sufficient to model the electrical activity of the GI tract using only two electric current dipoles in order to account for the magnetic data recorded non-invasively with SQUID magnetometers above the human abdomen. |
doi_str_mv | 10.1023/B:JOBP.0000046737.71194.62 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3456086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136780101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7a49f758d4a60f7a5183c12b89ee38553df4df50cf5736112934c2d5d61dd6a83</originalsourceid><addsrcrecordid>eNpdUcluFDEQtRCIDIFfQFZOXGbw3u4ckJiIVZHCIZwtx0vHUXe78RJp_iEfjZuEsPjiqvJ7r8r1ADjBaIcRoW_3p18v9t92aD1MdLTbdRj3bCfIE7DBvKNbJGT_FGwQ6kmLkTgCL3K-afBeEv4cHBFKGZcd3oC7y2sXkyvB6BHq2UITp6UWXUKcW2WqYwnL6GByQ3I5tyrMpdoDjB4OOpcUDHSjM2uwKpgSbkM5wJrDPEAbltjIJWmzpj7FCU56mNd-0Ac3Wjg5nWtyk5tLfgmeeT1m9-rhPgbfP364PPu8Pb_49OXs_fnW0J6VbadZ7zsuLdMC-U5zLKnB5Er2zlHJObWeWc-R8W0XAmPSU2aI5VZga4WW9Bi8u9dd6tXkrGm9kx7VksKk00FFHdS_L3O4VkO8VW1rAknRBN48CKT4o7pc1BSyceOoZxdrVphI0qzhhDXoyX_Qm1hT221WHUdUsJ6uA53eg0yKOSfnH2fBSK2eq71aPVd_PFe_PFeCNPLrv3_zSP1tMv0Jk-etKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750364938</pqid></control><display><type>article</type><title>Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Irimia, Andrei ; Beauchamp, John J ; Bradshaw, L Alan</creator><creatorcontrib>Irimia, Andrei ; Beauchamp, John J ; Bradshaw, L Alan</creatorcontrib><description>The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic field in the stomach and a computational implementation whereby we demonstrate its realism and usefulness. The computational algorithm developed for this purpose consists of dividing the magnetic field signal input surface into centroid-based grids that allow recursive least-squares approximations to be applied, followed by comparison tests in which the locations of the best-fitting current dipoles are determined. In the second part of the article, we develop a multiple-regression analysis of experimental gastric magnetic data collected using Superconducting QUantum Interference Device (SQUID) magnetometers and successfully processed using our algorithm. As a result of our analysis, we conclude on statistical grounds that it is sufficient to model the electrical activity of the GI tract using only two electric current dipoles in order to account for the magnetic data recorded non-invasively with SQUID magnetometers above the human abdomen.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1023/B:JOBP.0000046737.71194.62</identifier><identifier>PMID: 23345871</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Algorithms ; Magnetic fields ; Studies</subject><ispartof>Journal of biological physics, 2004-01, Vol.30 (3), p.239-259</ispartof><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456086/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456086/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23345871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irimia, Andrei</creatorcontrib><creatorcontrib>Beauchamp, John J</creatorcontrib><creatorcontrib>Bradshaw, L Alan</creatorcontrib><title>Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><description>The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic field in the stomach and a computational implementation whereby we demonstrate its realism and usefulness. The computational algorithm developed for this purpose consists of dividing the magnetic field signal input surface into centroid-based grids that allow recursive least-squares approximations to be applied, followed by comparison tests in which the locations of the best-fitting current dipoles are determined. In the second part of the article, we develop a multiple-regression analysis of experimental gastric magnetic data collected using Superconducting QUantum Interference Device (SQUID) magnetometers and successfully processed using our algorithm. As a result of our analysis, we conclude on statistical grounds that it is sufficient to model the electrical activity of the GI tract using only two electric current dipoles in order to account for the magnetic data recorded non-invasively with SQUID magnetometers above the human abdomen.</description><subject>Algorithms</subject><subject>Magnetic fields</subject><subject>Studies</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUcluFDEQtRCIDIFfQFZOXGbw3u4ckJiIVZHCIZwtx0vHUXe78RJp_iEfjZuEsPjiqvJ7r8r1ADjBaIcRoW_3p18v9t92aD1MdLTbdRj3bCfIE7DBvKNbJGT_FGwQ6kmLkTgCL3K-afBeEv4cHBFKGZcd3oC7y2sXkyvB6BHq2UITp6UWXUKcW2WqYwnL6GByQ3I5tyrMpdoDjB4OOpcUDHSjM2uwKpgSbkM5wJrDPEAbltjIJWmzpj7FCU56mNd-0Ac3Wjg5nWtyk5tLfgmeeT1m9-rhPgbfP364PPu8Pb_49OXs_fnW0J6VbadZ7zsuLdMC-U5zLKnB5Er2zlHJObWeWc-R8W0XAmPSU2aI5VZga4WW9Bi8u9dd6tXkrGm9kx7VksKk00FFHdS_L3O4VkO8VW1rAknRBN48CKT4o7pc1BSyceOoZxdrVphI0qzhhDXoyX_Qm1hT221WHUdUsJ6uA53eg0yKOSfnH2fBSK2eq71aPVd_PFe_PFeCNPLrv3_zSP1tMv0Jk-etKA</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Irimia, Andrei</creator><creator>Beauchamp, John J</creator><creator>Bradshaw, L Alan</creator><general>Springer Nature B.V</general><general>Kluwer Academic Publishers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040101</creationdate><title>Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements</title><author>Irimia, Andrei ; Beauchamp, John J ; Bradshaw, L Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7a49f758d4a60f7a5183c12b89ee38553df4df50cf5736112934c2d5d61dd6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Magnetic fields</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irimia, Andrei</creatorcontrib><creatorcontrib>Beauchamp, John J</creatorcontrib><creatorcontrib>Bradshaw, L Alan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irimia, Andrei</au><au>Beauchamp, John J</au><au>Bradshaw, L Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements</atitle><jtitle>Journal of biological physics</jtitle><addtitle>J Biol Phys</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>30</volume><issue>3</issue><spage>239</spage><epage>259</epage><pages>239-259</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic field in the stomach and a computational implementation whereby we demonstrate its realism and usefulness. The computational algorithm developed for this purpose consists of dividing the magnetic field signal input surface into centroid-based grids that allow recursive least-squares approximations to be applied, followed by comparison tests in which the locations of the best-fitting current dipoles are determined. In the second part of the article, we develop a multiple-regression analysis of experimental gastric magnetic data collected using Superconducting QUantum Interference Device (SQUID) magnetometers and successfully processed using our algorithm. As a result of our analysis, we conclude on statistical grounds that it is sufficient to model the electrical activity of the GI tract using only two electric current dipoles in order to account for the magnetic data recorded non-invasively with SQUID magnetometers above the human abdomen.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>23345871</pmid><doi>10.1023/B:JOBP.0000046737.71194.62</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-0606 |
ispartof | Journal of biological physics, 2004-01, Vol.30 (3), p.239-259 |
issn | 0092-0606 1573-0689 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3456086 |
source | PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Magnetic fields Studies |
title | Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20computational%20multiple%20regression%20study%20of%20gastric%20electrical%20activity%20using%20dipole%20tracing%20from%20magnetic%20field%20measurements&rft.jtitle=Journal%20of%20biological%20physics&rft.au=Irimia,%20Andrei&rft.date=2004-01-01&rft.volume=30&rft.issue=3&rft.spage=239&rft.epage=259&rft.pages=239-259&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1023/B:JOBP.0000046737.71194.62&rft_dat=%3Cproquest_pubme%3E2136780101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750364938&rft_id=info:pmid/23345871&rfr_iscdi=true |