Resonant drift of spiral waves in the complex ginzburg-landau equation

Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological physics 1999-06, Vol.25 (2-3), p.115-127
Hauptverfasser: Biktasheva, I V, Elkin, Y E, Biktashev, V N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2-3
container_start_page 115
container_title Journal of biological physics
container_volume 25
creator Biktasheva, I V
Elkin, Y E
Biktashev, V N
description Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.
doi_str_mv 10.1023/A:1005134901624
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3455966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1282042796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ed6a8335bc076ac6bb5bad044ff7d0757ea332034bb7e669e6f2d0fad6ef64e3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK2evcniyUt0sp-JB6EUq4IgSO9hk0zaLelum03qx19vxCrqaWZ4j8f7DSGnMVzGwPjV-DoGkDEXKcSKiT0yjKXmEagk3SdDgJT1O6gBOQphCf2dMHlIBoxzIVXKhmT6jME741paNrZqqa9oWNvG1PTFbDFQ62i7QFr41brGVzq37j3vmnlUG1eajuKmM6317pgcVKYOeLKbIzKb3s4m99Hj093DZPwYFVwnbYSlMgnnMi9AK1OoPJe5KUGIqtIlaKnRcM6AizzXqFSKqmIlVKZUWCmBfERuvmLXXb7CskDX9lWzdWNXpnnLvLHZX8XZRTb326zHlalSfcDFLqDxmw5Dm61sKLDucdB3IYtZwkAwnX5az_9Zl75rXE-XaQlcC5HGvensd6GfJt8P5h9b2n5_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750374491</pqid></control><display><type>article</type><title>Resonant drift of spiral waves in the complex ginzburg-landau equation</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Biktasheva, I V ; Elkin, Y E ; Biktashev, V N</creator><creatorcontrib>Biktasheva, I V ; Elkin, Y E ; Biktashev, V N</creatorcontrib><description>Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1023/A:1005134901624</identifier><identifier>PMID: 23345692</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Biophysics ; Simulation</subject><ispartof>Journal of biological physics, 1999-06, Vol.25 (2-3), p.115-127</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ed6a8335bc076ac6bb5bad044ff7d0757ea332034bb7e669e6f2d0fad6ef64e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3455966/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3455966/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23345692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biktasheva, I V</creatorcontrib><creatorcontrib>Elkin, Y E</creatorcontrib><creatorcontrib>Biktashev, V N</creatorcontrib><title>Resonant drift of spiral waves in the complex ginzburg-landau equation</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><description>Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.</description><subject>Biophysics</subject><subject>Simulation</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1Lw0AQxRdRbK2evcniyUt0sp-JB6EUq4IgSO9hk0zaLelum03qx19vxCrqaWZ4j8f7DSGnMVzGwPjV-DoGkDEXKcSKiT0yjKXmEagk3SdDgJT1O6gBOQphCf2dMHlIBoxzIVXKhmT6jME741paNrZqqa9oWNvG1PTFbDFQ62i7QFr41brGVzq37j3vmnlUG1eajuKmM6317pgcVKYOeLKbIzKb3s4m99Hj093DZPwYFVwnbYSlMgnnMi9AK1OoPJe5KUGIqtIlaKnRcM6AizzXqFSKqmIlVKZUWCmBfERuvmLXXb7CskDX9lWzdWNXpnnLvLHZX8XZRTb326zHlalSfcDFLqDxmw5Dm61sKLDucdB3IYtZwkAwnX5az_9Zl75rXE-XaQlcC5HGvensd6GfJt8P5h9b2n5_</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Biktasheva, I V</creator><creator>Elkin, Y E</creator><creator>Biktashev, V N</creator><general>Springer Nature B.V</general><general>Kluwer Academic Publishers</general><scope>NPM</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990601</creationdate><title>Resonant drift of spiral waves in the complex ginzburg-landau equation</title><author>Biktasheva, I V ; Elkin, Y E ; Biktashev, V N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ed6a8335bc076ac6bb5bad044ff7d0757ea332034bb7e669e6f2d0fad6ef64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biophysics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biktasheva, I V</creatorcontrib><creatorcontrib>Elkin, Y E</creatorcontrib><creatorcontrib>Biktashev, V N</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biktasheva, I V</au><au>Elkin, Y E</au><au>Biktashev, V N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant drift of spiral waves in the complex ginzburg-landau equation</atitle><jtitle>Journal of biological physics</jtitle><addtitle>J Biol Phys</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>25</volume><issue>2-3</issue><spage>115</spage><epage>127</epage><pages>115-127</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>23345692</pmid><doi>10.1023/A:1005134901624</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-0606
ispartof Journal of biological physics, 1999-06, Vol.25 (2-3), p.115-127
issn 0092-0606
1573-0689
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3455966
source PubMed Central; SpringerLink Journals - AutoHoldings
subjects Biophysics
Simulation
title Resonant drift of spiral waves in the complex ginzburg-landau equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20drift%20of%20spiral%20waves%20in%20the%20complex%20ginzburg-landau%20equation&rft.jtitle=Journal%20of%20biological%20physics&rft.au=Biktasheva,%20I%20V&rft.date=1999-06-01&rft.volume=25&rft.issue=2-3&rft.spage=115&rft.epage=127&rft.pages=115-127&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1023/A:1005134901624&rft_dat=%3Cproquest_pubme%3E1282042796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750374491&rft_id=info:pmid/23345692&rfr_iscdi=true