How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR

The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2012-09, Vol.103 (6), p.1245-1253
Hauptverfasser: Doux, Jacques P.F., Hall, Benjamin A., Killian, J. Antoinette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1253
container_issue 6
container_start_page 1245
container_title Biophysical journal
container_volume 103
creator Doux, Jacques P.F.
Hall, Benjamin A.
Killian, J. Antoinette
description The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.
doi_str_mv 10.1016/j.bpj.2012.08.031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349512009277</els_id><sourcerecordid>1069206947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3201-4a504c7bd1f13c6e3f816b2508bedf56ce9f5de088e042aa3e136aa03635c1613</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhA3ABH7kkjOM_m4CEtKoKi7RdJErPluNMtl4ldrCzi_j2uGyp4MLBmoN_8-bNPEJeMigZMPV2X7bTvqyAVSXUJXD2iCyYFFUBUKvHZAEAquCikWfkWUp7yKAE9pScVVXTSNEsF2S7Dj_oxk2uo2s03S6Gw5ToNfqEdL5FeoVjG41HeumPLgY_op_f0ZWnq2kanDWzC56GnjKxpdurr8_Jk94MCV_c13Ny8_Hy28W62Hz59PlitSksz3YLYSQIu2w71jNuFfK-ZqrN5uoWu14qi00vO4S6RhCVMRwZV8YAV1xaphg_Jx9OutOhHbGz2VU0g56iG038qYNx-t8f7271Lhw1F0Kp3wJv7gVi-H7ANOvRJYvDkHcNh6QZqKbKTywzyk6ojSGliP3DGAb6Lge91zkHfZeDhlrnHHLPq7_9PXT8OXwGXp-A3gRtdtElfXOdFWQOiVVqKTPx_kRgvuPRYdTJOvQWOxfRzroL7j8GfgEf3KDm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069206947</pqid></control><display><type>article</type><title>How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Doux, Jacques P.F. ; Hall, Benjamin A. ; Killian, J. Antoinette</creator><creatorcontrib>Doux, Jacques P.F. ; Hall, Benjamin A. ; Killian, J. Antoinette</creatorcontrib><description>The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2012.08.031</identifier><identifier>PMID: 22995497</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Membrane - chemistry ; Cell Membrane - metabolism ; cholesterol ; electrostatic interactions ; hydrophobicity ; Magnetic Resonance Spectroscopy ; Membrane ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; mixing ; Movement ; nuclear magnetic resonance spectroscopy ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; peptides ; phosphatidylcholines ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Static Electricity ; Temperature ; Water - chemistry</subject><ispartof>Biophysical journal, 2012-09, Vol.103 (6), p.1245-1253</ispartof><rights>2012 Biophysical Society</rights><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2012 by the Biophysical Society. 2012 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3201-4a504c7bd1f13c6e3f816b2508bedf56ce9f5de088e042aa3e136aa03635c1613</citedby><cites>FETCH-LOGICAL-c3201-4a504c7bd1f13c6e3f816b2508bedf56ce9f5de088e042aa3e136aa03635c1613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446661/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2012.08.031$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doux, Jacques P.F.</creatorcontrib><creatorcontrib>Hall, Benjamin A.</creatorcontrib><creatorcontrib>Killian, J. Antoinette</creatorcontrib><title>How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.</description><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>cholesterol</subject><subject>electrostatic interactions</subject><subject>hydrophobicity</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membrane</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>mixing</subject><subject>Movement</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>peptides</subject><subject>phosphatidylcholines</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Static Electricity</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhA3ABH7kkjOM_m4CEtKoKi7RdJErPluNMtl4ldrCzi_j2uGyp4MLBmoN_8-bNPEJeMigZMPV2X7bTvqyAVSXUJXD2iCyYFFUBUKvHZAEAquCikWfkWUp7yKAE9pScVVXTSNEsF2S7Dj_oxk2uo2s03S6Gw5ToNfqEdL5FeoVjG41HeumPLgY_op_f0ZWnq2kanDWzC56GnjKxpdurr8_Jk94MCV_c13Ny8_Hy28W62Hz59PlitSksz3YLYSQIu2w71jNuFfK-ZqrN5uoWu14qi00vO4S6RhCVMRwZV8YAV1xaphg_Jx9OutOhHbGz2VU0g56iG038qYNx-t8f7271Lhw1F0Kp3wJv7gVi-H7ANOvRJYvDkHcNh6QZqKbKTywzyk6ojSGliP3DGAb6Lge91zkHfZeDhlrnHHLPq7_9PXT8OXwGXp-A3gRtdtElfXOdFWQOiVVqKTPx_kRgvuPRYdTJOvQWOxfRzroL7j8GfgEf3KDm</recordid><startdate>20120919</startdate><enddate>20120919</enddate><creator>Doux, Jacques P.F.</creator><creator>Hall, Benjamin A.</creator><creator>Killian, J. Antoinette</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120919</creationdate><title>How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR</title><author>Doux, Jacques P.F. ; Hall, Benjamin A. ; Killian, J. Antoinette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3201-4a504c7bd1f13c6e3f816b2508bedf56ce9f5de088e042aa3e136aa03635c1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>cholesterol</topic><topic>electrostatic interactions</topic><topic>hydrophobicity</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membrane</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>mixing</topic><topic>Movement</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>peptides</topic><topic>phosphatidylcholines</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Static Electricity</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doux, Jacques P.F.</creatorcontrib><creatorcontrib>Hall, Benjamin A.</creatorcontrib><creatorcontrib>Killian, J. Antoinette</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doux, Jacques P.F.</au><au>Hall, Benjamin A.</au><au>Killian, J. Antoinette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-09-19</date><risdate>2012</risdate><volume>103</volume><issue>6</issue><spage>1245</spage><epage>1253</epage><pages>1245-1253</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22995497</pmid><doi>10.1016/j.bpj.2012.08.031</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2012-09, Vol.103 (6), p.1245-1253
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446661
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell Membrane - chemistry
Cell Membrane - metabolism
cholesterol
electrostatic interactions
hydrophobicity
Magnetic Resonance Spectroscopy
Membrane
Membrane Proteins - chemistry
Membrane Proteins - metabolism
mixing
Movement
nuclear magnetic resonance spectroscopy
Peptide Fragments - chemistry
Peptide Fragments - metabolism
peptides
phosphatidylcholines
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
Static Electricity
Temperature
Water - chemistry
title How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Lipid%20Headgroups%20Sense%20the%20Membrane%20Environment:%20An%20Application%20of%2014N%20NMR&rft.jtitle=Biophysical%20journal&rft.au=Doux,%20Jacques%C2%A0P.F.&rft.date=2012-09-19&rft.volume=103&rft.issue=6&rft.spage=1245&rft.epage=1253&rft.pages=1245-1253&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2012.08.031&rft_dat=%3Cproquest_pubme%3E1069206947%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069206947&rft_id=info:pmid/22995497&rft_els_id=S0006349512009277&rfr_iscdi=true