Role of Vitamin D in Insulin Resistance
Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2012-01, Vol.2012 (2012), p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2012 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2012 |
creator | Sung, Chih-Chien Liao, Min-Tser Lu, Kuo-Cheng Wu, Chia-Chao |
description | Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation are all biological functions of vitamin D. Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes, including diabetes mellitus (DM), hypertension, and cardiovascular disease. The incidence of type 2 DM is increasing worldwide and results from a lack of insulin or inadequate insulin secretion following increases in insulin resistance. Therefore, it has been proposed that vitamin D deficiency plays an important role in insulin resistance resulting in diabetes. The potential role of vitamin D deficiency in insulin resistance has been proposed to be associated with inherited gene polymorphisms including vitamin D-binding protein, vitamin D receptor, and vitamin D 1alpha-hydroxylase gene. Other roles have been proposed to involve immunoregulatory function by activating innate and adaptive immunity and cytokine release, activating inflammation by upregulation of nuclear factor κB and inducing tumor necrosis factor α, and other molecular actions to maintain glucose homeostasis and mediate insulin sensitivity by a low calcium status, obesity, or by elevating serum levels of parathyroid hormone. These effects of vitamin D deficiency, either acting in concert or alone, all serve to increase insulin resistance. Although there is evidence to support a relationship between vitamin D status and insulin resistance, the underlying mechanism requires further exploration. The purpose of this paper was to review the current information available concerning the role of vitamin D in insulin resistance. |
doi_str_mv | 10.1155/2012/634195 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3440067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A339000211</galeid><sourcerecordid>A339000211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-52f460eaa18c2746ea31395b8253387e522b15047101b163d6be062eb01424103</originalsourceid><addsrcrecordid>eNqFkt1rFTEQxYMotlaffFYu-FBRtp3J12ZfhFK_CgWhqK8hu3f2NmU3qZtdi_-9WbZerVwogcyQ_OaQHA5jzxGOEJU65oD8WAuJlXrA9hERipIrfLjtpdhjT1K6AsDS6Oox2-O8MkZysc8OL2JHq9iuvvvR9T6s3q_ydhbS1OV6Qcmn0YWGnrJHresSPbutB-zbxw9fTz8X518-nZ2enBeNLmEsFG-lBnIOTcNLqckJFJWqDVdCmJIU5zUqkCUC1qjFWtcEmlMNKLlEEAfs3aJ7PdU9rRsK4-A6ez343g2_bHTe3r0J_tJu4k8rpATQZRZ4fSswxB8TpdH2PjXUdS5QnJJFwY0Cw0tzPwoSUYKoMKOv_kOv4jSE7MRMga6yyfwvtXEdWR_amJ_YzKL2RIgKADjOWsUOakOB8n9ioNbn4zv80Q4-rzX1vtk58HYZaIaY0kDt1j4EO0fGzpGxS2Qy_fJfx7fsn4xk4M0CXPqwdjf-HrUXC0wZodZtYWm0EVL8BoVUyws</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040692432</pqid></control><display><type>article</type><title>Role of Vitamin D in Insulin Resistance</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sung, Chih-Chien ; Liao, Min-Tser ; Lu, Kuo-Cheng ; Wu, Chia-Chao</creator><contributor>Takahashi, Hilton Kenji</contributor><creatorcontrib>Sung, Chih-Chien ; Liao, Min-Tser ; Lu, Kuo-Cheng ; Wu, Chia-Chao ; Takahashi, Hilton Kenji</creatorcontrib><description>Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation are all biological functions of vitamin D. Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes, including diabetes mellitus (DM), hypertension, and cardiovascular disease. The incidence of type 2 DM is increasing worldwide and results from a lack of insulin or inadequate insulin secretion following increases in insulin resistance. Therefore, it has been proposed that vitamin D deficiency plays an important role in insulin resistance resulting in diabetes. The potential role of vitamin D deficiency in insulin resistance has been proposed to be associated with inherited gene polymorphisms including vitamin D-binding protein, vitamin D receptor, and vitamin D 1alpha-hydroxylase gene. Other roles have been proposed to involve immunoregulatory function by activating innate and adaptive immunity and cytokine release, activating inflammation by upregulation of nuclear factor κB and inducing tumor necrosis factor α, and other molecular actions to maintain glucose homeostasis and mediate insulin sensitivity by a low calcium status, obesity, or by elevating serum levels of parathyroid hormone. These effects of vitamin D deficiency, either acting in concert or alone, all serve to increase insulin resistance. Although there is evidence to support a relationship between vitamin D status and insulin resistance, the underlying mechanism requires further exploration. The purpose of this paper was to review the current information available concerning the role of vitamin D in insulin resistance.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 1110-7251</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2012/634195</identifier><identifier>PMID: 22988423</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Alfacalcidol ; Animals ; Calcifediol ; Cardiovascular diseases ; Diabetes ; Diabetes Mellitus - etiology ; Diabetes Mellitus - metabolism ; Humans ; Insulin - metabolism ; Insulin Resistance ; Metabolites ; Physiological aspects ; Proteins ; Review ; Vitamin D ; Vitamin D - metabolism ; Vitamin D Deficiency - complications ; Vitamin D Deficiency - metabolism</subject><ispartof>BioMed research international, 2012-01, Vol.2012 (2012), p.1-11</ispartof><rights>Copyright © 2012 Chih-Chien Sung et al.</rights><rights>COPYRIGHT 2012 John Wiley & Sons, Inc.</rights><rights>Copyright © 2012 Chih-Chien Sung et al. Chih-Chien Sung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2012 Chih-Chien Sung et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-52f460eaa18c2746ea31395b8253387e522b15047101b163d6be062eb01424103</citedby><cites>FETCH-LOGICAL-c670t-52f460eaa18c2746ea31395b8253387e522b15047101b163d6be062eb01424103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22988423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Takahashi, Hilton Kenji</contributor><creatorcontrib>Sung, Chih-Chien</creatorcontrib><creatorcontrib>Liao, Min-Tser</creatorcontrib><creatorcontrib>Lu, Kuo-Cheng</creatorcontrib><creatorcontrib>Wu, Chia-Chao</creatorcontrib><title>Role of Vitamin D in Insulin Resistance</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation are all biological functions of vitamin D. Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes, including diabetes mellitus (DM), hypertension, and cardiovascular disease. The incidence of type 2 DM is increasing worldwide and results from a lack of insulin or inadequate insulin secretion following increases in insulin resistance. Therefore, it has been proposed that vitamin D deficiency plays an important role in insulin resistance resulting in diabetes. The potential role of vitamin D deficiency in insulin resistance has been proposed to be associated with inherited gene polymorphisms including vitamin D-binding protein, vitamin D receptor, and vitamin D 1alpha-hydroxylase gene. Other roles have been proposed to involve immunoregulatory function by activating innate and adaptive immunity and cytokine release, activating inflammation by upregulation of nuclear factor κB and inducing tumor necrosis factor α, and other molecular actions to maintain glucose homeostasis and mediate insulin sensitivity by a low calcium status, obesity, or by elevating serum levels of parathyroid hormone. These effects of vitamin D deficiency, either acting in concert or alone, all serve to increase insulin resistance. Although there is evidence to support a relationship between vitamin D status and insulin resistance, the underlying mechanism requires further exploration. The purpose of this paper was to review the current information available concerning the role of vitamin D in insulin resistance.</description><subject>Alfacalcidol</subject><subject>Animals</subject><subject>Calcifediol</subject><subject>Cardiovascular diseases</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - etiology</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance</subject><subject>Metabolites</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Review</subject><subject>Vitamin D</subject><subject>Vitamin D - metabolism</subject><subject>Vitamin D Deficiency - complications</subject><subject>Vitamin D Deficiency - metabolism</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>1110-7251</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt1rFTEQxYMotlaffFYu-FBRtp3J12ZfhFK_CgWhqK8hu3f2NmU3qZtdi_-9WbZerVwogcyQ_OaQHA5jzxGOEJU65oD8WAuJlXrA9hERipIrfLjtpdhjT1K6AsDS6Oox2-O8MkZysc8OL2JHq9iuvvvR9T6s3q_ydhbS1OV6Qcmn0YWGnrJHresSPbutB-zbxw9fTz8X518-nZ2enBeNLmEsFG-lBnIOTcNLqckJFJWqDVdCmJIU5zUqkCUC1qjFWtcEmlMNKLlEEAfs3aJ7PdU9rRsK4-A6ez343g2_bHTe3r0J_tJu4k8rpATQZRZ4fSswxB8TpdH2PjXUdS5QnJJFwY0Cw0tzPwoSUYKoMKOv_kOv4jSE7MRMga6yyfwvtXEdWR_amJ_YzKL2RIgKADjOWsUOakOB8n9ioNbn4zv80Q4-rzX1vtk58HYZaIaY0kDt1j4EO0fGzpGxS2Qy_fJfx7fsn4xk4M0CXPqwdjf-HrUXC0wZodZtYWm0EVL8BoVUyws</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Sung, Chih-Chien</creator><creator>Liao, Min-Tser</creator><creator>Lu, Kuo-Cheng</creator><creator>Wu, Chia-Chao</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AACQA</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Role of Vitamin D in Insulin Resistance</title><author>Sung, Chih-Chien ; Liao, Min-Tser ; Lu, Kuo-Cheng ; Wu, Chia-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-52f460eaa18c2746ea31395b8253387e522b15047101b163d6be062eb01424103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alfacalcidol</topic><topic>Animals</topic><topic>Calcifediol</topic><topic>Cardiovascular diseases</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - etiology</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance</topic><topic>Metabolites</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Review</topic><topic>Vitamin D</topic><topic>Vitamin D - metabolism</topic><topic>Vitamin D Deficiency - complications</topic><topic>Vitamin D Deficiency - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Chih-Chien</creatorcontrib><creatorcontrib>Liao, Min-Tser</creatorcontrib><creatorcontrib>Lu, Kuo-Cheng</creatorcontrib><creatorcontrib>Wu, Chia-Chao</creatorcontrib><collection>بنك معلومات "معرفة" لدراسات العلوم العسكرية والأمنية - e-Marefa Military & Security Database</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Chih-Chien</au><au>Liao, Min-Tser</au><au>Lu, Kuo-Cheng</au><au>Wu, Chia-Chao</au><au>Takahashi, Hilton Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Vitamin D in Insulin Resistance</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>1110-7251</eissn><eissn>2314-6141</eissn><abstract>Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation are all biological functions of vitamin D. Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes, including diabetes mellitus (DM), hypertension, and cardiovascular disease. The incidence of type 2 DM is increasing worldwide and results from a lack of insulin or inadequate insulin secretion following increases in insulin resistance. Therefore, it has been proposed that vitamin D deficiency plays an important role in insulin resistance resulting in diabetes. The potential role of vitamin D deficiency in insulin resistance has been proposed to be associated with inherited gene polymorphisms including vitamin D-binding protein, vitamin D receptor, and vitamin D 1alpha-hydroxylase gene. Other roles have been proposed to involve immunoregulatory function by activating innate and adaptive immunity and cytokine release, activating inflammation by upregulation of nuclear factor κB and inducing tumor necrosis factor α, and other molecular actions to maintain glucose homeostasis and mediate insulin sensitivity by a low calcium status, obesity, or by elevating serum levels of parathyroid hormone. These effects of vitamin D deficiency, either acting in concert or alone, all serve to increase insulin resistance. Although there is evidence to support a relationship between vitamin D status and insulin resistance, the underlying mechanism requires further exploration. The purpose of this paper was to review the current information available concerning the role of vitamin D in insulin resistance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>22988423</pmid><doi>10.1155/2012/634195</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-7243 |
ispartof | BioMed research international, 2012-01, Vol.2012 (2012), p.1-11 |
issn | 1110-7243 2314-6133 1110-7251 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3440067 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Alfacalcidol Animals Calcifediol Cardiovascular diseases Diabetes Diabetes Mellitus - etiology Diabetes Mellitus - metabolism Humans Insulin - metabolism Insulin Resistance Metabolites Physiological aspects Proteins Review Vitamin D Vitamin D - metabolism Vitamin D Deficiency - complications Vitamin D Deficiency - metabolism |
title | Role of Vitamin D in Insulin Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Vitamin%20D%20in%20Insulin%20Resistance&rft.jtitle=BioMed%20research%20international&rft.au=Sung,%20Chih-Chien&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-7243&rft.eissn=1110-7251&rft_id=info:doi/10.1155/2012/634195&rft_dat=%3Cgale_pubme%3EA339000211%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1040692432&rft_id=info:pmid/22988423&rft_galeid=A339000211&rfr_iscdi=true |