Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study
The representation of cement–augmented bone in finite element (FE) models of vertebrae following vertebroplasty remains a challenge, and the methods of the model validation are limited. The aim of this study was to create specimen-specific FE models of cement–augmented synthetic bone at the microsco...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2012-10, Vol.40 (10), p.2168-2176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2176 |
---|---|
container_issue | 10 |
container_start_page | 2168 |
container_title | Annals of biomedical engineering |
container_volume | 40 |
creator | Zhao, Y. Robson Brown, K. A. Jin, Z. M. Wilcox, R. K. |
description | The representation of cement–augmented bone in finite element (FE) models of vertebrae following vertebroplasty remains a challenge, and the methods of the model validation are limited. The aim of this study was to create specimen-specific FE models of cement–augmented synthetic bone at the microscopic level, and to develop a new methodology to validate these models. An open cell polyurethane foam was used reduce drying effects and because of its similar structure to osteoporotic trabecular bone. Cylindrical specimens of the foam were augmented with PMMA cement. Each specimen was loaded to three levels of compression inside a micro-computed tomography (μCT) scanner and imaged both before compression and in each of the loaded states. Micro-FE models were generated from the unloaded μCT images and displacements applied to match measurements taken from the images. A morphological comparison between the FE-predicted trabecular deformations and the corresponding experimental measurements was developed to validate the accuracy of the FE model. The predicted deformation was found to be accurate (less than 12% error) in the elastic region. This method can now be used to evaluate real bone and different types of bone cements for different clinical situations. |
doi_str_mv | 10.1007/s10439-012-0587-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3438401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757118111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-86ac5472e21d8a75843ea9de367ba545bc9059d4d843987d697000f2f2da68803</originalsourceid><addsrcrecordid>eNqNkUtvEzEUhS0EomnhB7BBltiwmXI9frNAClEfSJFYUNaWM-MJEzl2sGei5t_X6ZSqVEJidWWf75577YPQOwLnBEB-ygQY1RWQugKuZEVfoBnhklZaKPESzQA0VEILdoJOc94AEKIof41O6lowxSWboc1NsivXjN4mvHR75_E8WH_Ifcaxw19jcHjhti4MeD6uj9UOfQyf8Rwv4nZnUznuHb643bnU38se29Diyz70Q7n3U--PYWwPb9Crzvrs3j7UM_Tz8uJmcV0tv199W8yXVcOBDpUStuFM1q4mrbKSK0ad1a2jQq4sZ3zVaOC6ZW0RtJKt0BIAurqrWyuUAnqGvky-u3G1dW1TFkjWm11Z0KaDibY3fyuh_2XWcW8oo4oBKQYfHwxS_D26PJhtnxvnvQ0ujtkQ0JQxroT-D5TqukQlaUE_PEM3cUzls-8ppQlwzgtFJqpJMefkuse9CZhj6GYK3ZTQzTF0c3R-__TBjx1_Ui5APQG5SGHt0tPR_3K9A577tvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038910555</pqid></control><display><type>article</type><title>Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Y. ; Robson Brown, K. A. ; Jin, Z. M. ; Wilcox, R. K.</creator><creatorcontrib>Zhao, Y. ; Robson Brown, K. A. ; Jin, Z. M. ; Wilcox, R. K.</creatorcontrib><description>The representation of cement–augmented bone in finite element (FE) models of vertebrae following vertebroplasty remains a challenge, and the methods of the model validation are limited. The aim of this study was to create specimen-specific FE models of cement–augmented synthetic bone at the microscopic level, and to develop a new methodology to validate these models. An open cell polyurethane foam was used reduce drying effects and because of its similar structure to osteoporotic trabecular bone. Cylindrical specimens of the foam were augmented with PMMA cement. Each specimen was loaded to three levels of compression inside a micro-computed tomography (μCT) scanner and imaged both before compression and in each of the loaded states. Micro-FE models were generated from the unloaded μCT images and displacements applied to match measurements taken from the images. A morphological comparison between the FE-predicted trabecular deformations and the corresponding experimental measurements was developed to validate the accuracy of the FE model. The predicted deformation was found to be accurate (less than 12% error) in the elastic region. This method can now be used to evaluate real bone and different types of bone cements for different clinical situations.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-012-0587-3</identifier><identifier>PMID: 22648574</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Bone and Bones - chemistry ; Bone and Bones - ultrastructure ; Bone Cements - chemistry ; Classical Mechanics ; Compressive Strength ; Computed tomography ; Elasticity ; Finite Element Analysis ; Humans ; Models, Biological ; Osteoporosis ; X-Ray Microtomography</subject><ispartof>Annals of biomedical engineering, 2012-10, Vol.40 (10), p.2168-2176</ispartof><rights>The Author(s) 2012</rights><rights>Biomedical Engineering Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-86ac5472e21d8a75843ea9de367ba545bc9059d4d843987d697000f2f2da68803</citedby><cites>FETCH-LOGICAL-c503t-86ac5472e21d8a75843ea9de367ba545bc9059d4d843987d697000f2f2da68803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-012-0587-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-012-0587-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22648574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Robson Brown, K. A.</creatorcontrib><creatorcontrib>Jin, Z. M.</creatorcontrib><creatorcontrib>Wilcox, R. K.</creatorcontrib><title>Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The representation of cement–augmented bone in finite element (FE) models of vertebrae following vertebroplasty remains a challenge, and the methods of the model validation are limited. The aim of this study was to create specimen-specific FE models of cement–augmented synthetic bone at the microscopic level, and to develop a new methodology to validate these models. An open cell polyurethane foam was used reduce drying effects and because of its similar structure to osteoporotic trabecular bone. Cylindrical specimens of the foam were augmented with PMMA cement. Each specimen was loaded to three levels of compression inside a micro-computed tomography (μCT) scanner and imaged both before compression and in each of the loaded states. Micro-FE models were generated from the unloaded μCT images and displacements applied to match measurements taken from the images. A morphological comparison between the FE-predicted trabecular deformations and the corresponding experimental measurements was developed to validate the accuracy of the FE model. The predicted deformation was found to be accurate (less than 12% error) in the elastic region. This method can now be used to evaluate real bone and different types of bone cements for different clinical situations.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - ultrastructure</subject><subject>Bone Cements - chemistry</subject><subject>Classical Mechanics</subject><subject>Compressive Strength</subject><subject>Computed tomography</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Osteoporosis</subject><subject>X-Ray Microtomography</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtvEzEUhS0EomnhB7BBltiwmXI9frNAClEfSJFYUNaWM-MJEzl2sGei5t_X6ZSqVEJidWWf75577YPQOwLnBEB-ygQY1RWQugKuZEVfoBnhklZaKPESzQA0VEILdoJOc94AEKIof41O6lowxSWboc1NsivXjN4mvHR75_E8WH_Ifcaxw19jcHjhti4MeD6uj9UOfQyf8Rwv4nZnUznuHb643bnU38se29Diyz70Q7n3U--PYWwPb9Crzvrs3j7UM_Tz8uJmcV0tv199W8yXVcOBDpUStuFM1q4mrbKSK0ad1a2jQq4sZ3zVaOC6ZW0RtJKt0BIAurqrWyuUAnqGvky-u3G1dW1TFkjWm11Z0KaDibY3fyuh_2XWcW8oo4oBKQYfHwxS_D26PJhtnxvnvQ0ujtkQ0JQxroT-D5TqukQlaUE_PEM3cUzls-8ppQlwzgtFJqpJMefkuse9CZhj6GYK3ZTQzTF0c3R-__TBjx1_Ui5APQG5SGHt0tPR_3K9A577tvY</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Zhao, Y.</creator><creator>Robson Brown, K. A.</creator><creator>Jin, Z. M.</creator><creator>Wilcox, R. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121001</creationdate><title>Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study</title><author>Zhao, Y. ; Robson Brown, K. A. ; Jin, Z. M. ; Wilcox, R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-86ac5472e21d8a75843ea9de367ba545bc9059d4d843987d697000f2f2da68803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - ultrastructure</topic><topic>Bone Cements - chemistry</topic><topic>Classical Mechanics</topic><topic>Compressive Strength</topic><topic>Computed tomography</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Osteoporosis</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Robson Brown, K. A.</creatorcontrib><creatorcontrib>Jin, Z. M.</creatorcontrib><creatorcontrib>Wilcox, R. K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Y.</au><au>Robson Brown, K. A.</au><au>Jin, Z. M.</au><au>Wilcox, R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>40</volume><issue>10</issue><spage>2168</spage><epage>2176</epage><pages>2168-2176</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The representation of cement–augmented bone in finite element (FE) models of vertebrae following vertebroplasty remains a challenge, and the methods of the model validation are limited. The aim of this study was to create specimen-specific FE models of cement–augmented synthetic bone at the microscopic level, and to develop a new methodology to validate these models. An open cell polyurethane foam was used reduce drying effects and because of its similar structure to osteoporotic trabecular bone. Cylindrical specimens of the foam were augmented with PMMA cement. Each specimen was loaded to three levels of compression inside a micro-computed tomography (μCT) scanner and imaged both before compression and in each of the loaded states. Micro-FE models were generated from the unloaded μCT images and displacements applied to match measurements taken from the images. A morphological comparison between the FE-predicted trabecular deformations and the corresponding experimental measurements was developed to validate the accuracy of the FE model. The predicted deformation was found to be accurate (less than 12% error) in the elastic region. This method can now be used to evaluate real bone and different types of bone cements for different clinical situations.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22648574</pmid><doi>10.1007/s10439-012-0587-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2012-10, Vol.40 (10), p.2168-2176 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3438401 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Bone and Bones - chemistry Bone and Bones - ultrastructure Bone Cements - chemistry Classical Mechanics Compressive Strength Computed tomography Elasticity Finite Element Analysis Humans Models, Biological Osteoporosis X-Ray Microtomography |
title | Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trabecular%20Level%20Analysis%20of%20Bone%20Cement%20Augmentation:%20A%20Comparative%20Experimental%20and%20Finite%20Element%20Study&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Zhao,%20Y.&rft.date=2012-10-01&rft.volume=40&rft.issue=10&rft.spage=2168&rft.epage=2176&rft.pages=2168-2176&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-012-0587-3&rft_dat=%3Cproquest_pubme%3E2757118111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038910555&rft_id=info:pmid/22648574&rfr_iscdi=true |