Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2

Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-08, Vol.287 (35), p.29579-29588
Hauptverfasser: Yuan, Minsheng, Pino, Elizabeth, Wu, Lianfeng, Kacergis, Michael, Soukas, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29588
container_issue 35
container_start_page 29579
container_title The Journal of biological chemistry
container_volume 287
creator Yuan, Minsheng
Pino, Elizabeth
Wu, Lianfeng
Kacergis, Michael
Soukas, Alexander A.
description Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism. Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt. Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling. Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis. Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.
doi_str_mv 10.1074/jbc.M112.386854
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3436168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820632215</els_id><sourcerecordid>1035529752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</originalsourceid><addsrcrecordid>eNp1kc1r2zAYxsXYaNOP825Dx-7gVJ-2fBmU0LWFlELIoDehyK8zdbbkSXZZ_vsppAvbYbpI8Pz0vB8PQh8pmVNSieuXjZ0_UsrmXJVKindoRoniBZf0-T2aEcJoUTOpTtFZSi8kH1HTE3TKWFVxVVUzND004EfXOmtGFzwOLb75MRbONzCA32t4BdupO6r3MOS3xUs3hC14SC7hzQ4_mr43nTMer03cwrhHV2Yw_c46j6_69dPqM16EfujgF2YX6ENrugSXb_c5-vb1dr24L5ZPdw-Lm2VhJanHogUlCJeKsg1hYKwqmSjrummJECBVpWhpBVNl03Bb8aphQnBJmGxbYVqogZ-jLwffYdr00Ng8TjSdHqLrTdzpYJz-V_Huu96GV80FL2mpssHVm0EMPydIo-5dstB1xkOYkqa5PcnqSrKMXh9QG0NKEdpjGUr0Piydw9L7sPQhrPzj09_dHfk_6WSgPgCQd_TqIOpkHXgLjYtgR90E91_z3-gXpIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035529752</pqid></control><display><type>article</type><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</creator><creatorcontrib>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</creatorcontrib><description>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism. Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt. Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling. Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis. Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.386854</identifier><identifier>PMID: 22773877</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Akt ; Animals ; Cholesterol - biosynthesis ; Cholesterol - genetics ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Forkhead Box Protein O1 ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; Gene Expression Regulation - physiology ; Gluconeogenesis ; Glucose - genetics ; Glucose - metabolism ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Hep G2 Cells ; Humans ; Insulin ; Insulin - genetics ; Insulin - metabolism ; Insulin Resistance - physiology ; Lipogenesis ; Lipogenesis - physiology ; Liver - metabolism ; Metabolism ; Mice ; Mice, Transgenic ; mTOR Complex (mTORC) ; mTOR Complex 2 (mTORC2) ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation - physiology ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Sterol Regulatory Element Binding Protein 1 - genetics ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Sterol Regulatory Element Binding Protein 2 - genetics ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberous Sclerosis Complex 2 Protein ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2012-08, Vol.287 (35), p.29579-29588</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</citedby><cites>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436168/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436168/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22773877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Minsheng</creatorcontrib><creatorcontrib>Pino, Elizabeth</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kacergis, Michael</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism. Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt. Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling. Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis. Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Akt</subject><subject>Animals</subject><subject>Cholesterol - biosynthesis</subject><subject>Cholesterol - genetics</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gluconeogenesis</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance - physiology</subject><subject>Lipogenesis</subject><subject>Lipogenesis - physiology</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mTOR Complex (mTORC)</subject><subject>mTOR Complex 2 (mTORC2)</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - physiology</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberous Sclerosis Complex 2 Protein</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1r2zAYxsXYaNOP825Dx-7gVJ-2fBmU0LWFlELIoDehyK8zdbbkSXZZ_vsppAvbYbpI8Pz0vB8PQh8pmVNSieuXjZ0_UsrmXJVKindoRoniBZf0-T2aEcJoUTOpTtFZSi8kH1HTE3TKWFVxVVUzND004EfXOmtGFzwOLb75MRbONzCA32t4BdupO6r3MOS3xUs3hC14SC7hzQ4_mr43nTMer03cwrhHV2Yw_c46j6_69dPqM16EfujgF2YX6ENrugSXb_c5-vb1dr24L5ZPdw-Lm2VhJanHogUlCJeKsg1hYKwqmSjrummJECBVpWhpBVNl03Bb8aphQnBJmGxbYVqogZ-jLwffYdr00Ng8TjSdHqLrTdzpYJz-V_Huu96GV80FL2mpssHVm0EMPydIo-5dstB1xkOYkqa5PcnqSrKMXh9QG0NKEdpjGUr0Piydw9L7sPQhrPzj09_dHfk_6WSgPgCQd_TqIOpkHXgLjYtgR90E91_z3-gXpIs</recordid><startdate>20120824</startdate><enddate>20120824</enddate><creator>Yuan, Minsheng</creator><creator>Pino, Elizabeth</creator><creator>Wu, Lianfeng</creator><creator>Kacergis, Michael</creator><creator>Soukas, Alexander A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120824</creationdate><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><author>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Akt</topic><topic>Animals</topic><topic>Cholesterol - biosynthesis</topic><topic>Cholesterol - genetics</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gluconeogenesis</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance - physiology</topic><topic>Lipogenesis</topic><topic>Lipogenesis - physiology</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mTOR Complex (mTORC)</topic><topic>mTOR Complex 2 (mTORC2)</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - physiology</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberous Sclerosis Complex 2 Protein</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Minsheng</creatorcontrib><creatorcontrib>Pino, Elizabeth</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kacergis, Michael</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Minsheng</au><au>Pino, Elizabeth</au><au>Wu, Lianfeng</au><au>Kacergis, Michael</au><au>Soukas, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-08-24</date><risdate>2012</risdate><volume>287</volume><issue>35</issue><spage>29579</spage><epage>29588</epage><pages>29579-29588</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism. Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt. Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling. Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis. Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22773877</pmid><doi>10.1074/jbc.M112.386854</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-08, Vol.287 (35), p.29579-29588
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3436168
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Akt
Animals
Cholesterol - biosynthesis
Cholesterol - genetics
Fatty Acids - genetics
Fatty Acids - metabolism
Forkhead Box Protein O1
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - metabolism
Gene Expression Regulation - physiology
Gluconeogenesis
Glucose - genetics
Glucose - metabolism
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
Hep G2 Cells
Humans
Insulin
Insulin - genetics
Insulin - metabolism
Insulin Resistance - physiology
Lipogenesis
Lipogenesis - physiology
Liver - metabolism
Metabolism
Mice
Mice, Transgenic
mTOR Complex (mTORC)
mTOR Complex 2 (mTORC2)
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phosphorylation - physiology
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Sterol Regulatory Element Binding Protein 1 - genetics
Sterol Regulatory Element Binding Protein 1 - metabolism
Sterol Regulatory Element Binding Protein 2 - genetics
Sterol Regulatory Element Binding Protein 2 - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Tuberous Sclerosis Complex 2 Protein
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Akt-independent%20Regulation%20of%20Hepatic%20Lipogenesis%20by%20Mammalian%20Target%20of%20Rapamycin%20(mTOR)%20Complex%202&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yuan,%20Minsheng&rft.date=2012-08-24&rft.volume=287&rft.issue=35&rft.spage=29579&rft.epage=29588&rft.pages=29579-29588&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.386854&rft_dat=%3Cproquest_pubme%3E1035529752%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035529752&rft_id=info:pmid/22773877&rft_els_id=S0021925820632215&rfr_iscdi=true