Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2
Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to ins...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-08, Vol.287 (35), p.29579-29588 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29588 |
---|---|
container_issue | 35 |
container_start_page | 29579 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Yuan, Minsheng Pino, Elizabeth Wu, Lianfeng Kacergis, Michael Soukas, Alexander A. |
description | Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.
Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt.
Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling.
Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis.
Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment. |
doi_str_mv | 10.1074/jbc.M112.386854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3436168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820632215</els_id><sourcerecordid>1035529752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</originalsourceid><addsrcrecordid>eNp1kc1r2zAYxsXYaNOP825Dx-7gVJ-2fBmU0LWFlELIoDehyK8zdbbkSXZZ_vsppAvbYbpI8Pz0vB8PQh8pmVNSieuXjZ0_UsrmXJVKindoRoniBZf0-T2aEcJoUTOpTtFZSi8kH1HTE3TKWFVxVVUzND004EfXOmtGFzwOLb75MRbONzCA32t4BdupO6r3MOS3xUs3hC14SC7hzQ4_mr43nTMer03cwrhHV2Yw_c46j6_69dPqM16EfujgF2YX6ENrugSXb_c5-vb1dr24L5ZPdw-Lm2VhJanHogUlCJeKsg1hYKwqmSjrummJECBVpWhpBVNl03Bb8aphQnBJmGxbYVqogZ-jLwffYdr00Ng8TjSdHqLrTdzpYJz-V_Huu96GV80FL2mpssHVm0EMPydIo-5dstB1xkOYkqa5PcnqSrKMXh9QG0NKEdpjGUr0Piydw9L7sPQhrPzj09_dHfk_6WSgPgCQd_TqIOpkHXgLjYtgR90E91_z3-gXpIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035529752</pqid></control><display><type>article</type><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</creator><creatorcontrib>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</creatorcontrib><description>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.
Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt.
Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling.
Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis.
Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.386854</identifier><identifier>PMID: 22773877</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Akt ; Animals ; Cholesterol - biosynthesis ; Cholesterol - genetics ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Forkhead Box Protein O1 ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; Gene Expression Regulation - physiology ; Gluconeogenesis ; Glucose - genetics ; Glucose - metabolism ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Hep G2 Cells ; Humans ; Insulin ; Insulin - genetics ; Insulin - metabolism ; Insulin Resistance - physiology ; Lipogenesis ; Lipogenesis - physiology ; Liver - metabolism ; Metabolism ; Mice ; Mice, Transgenic ; mTOR Complex (mTORC) ; mTOR Complex 2 (mTORC2) ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation - physiology ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Sterol Regulatory Element Binding Protein 1 - genetics ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Sterol Regulatory Element Binding Protein 2 - genetics ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberous Sclerosis Complex 2 Protein ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2012-08, Vol.287 (35), p.29579-29588</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</citedby><cites>FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436168/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436168/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22773877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Minsheng</creatorcontrib><creatorcontrib>Pino, Elizabeth</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kacergis, Michael</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.
Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt.
Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling.
Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis.
Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Akt</subject><subject>Animals</subject><subject>Cholesterol - biosynthesis</subject><subject>Cholesterol - genetics</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gluconeogenesis</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance - physiology</subject><subject>Lipogenesis</subject><subject>Lipogenesis - physiology</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mTOR Complex (mTORC)</subject><subject>mTOR Complex 2 (mTORC2)</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - physiology</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberous Sclerosis Complex 2 Protein</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1r2zAYxsXYaNOP825Dx-7gVJ-2fBmU0LWFlELIoDehyK8zdbbkSXZZ_vsppAvbYbpI8Pz0vB8PQh8pmVNSieuXjZ0_UsrmXJVKindoRoniBZf0-T2aEcJoUTOpTtFZSi8kH1HTE3TKWFVxVVUzND004EfXOmtGFzwOLb75MRbONzCA32t4BdupO6r3MOS3xUs3hC14SC7hzQ4_mr43nTMer03cwrhHV2Yw_c46j6_69dPqM16EfujgF2YX6ENrugSXb_c5-vb1dr24L5ZPdw-Lm2VhJanHogUlCJeKsg1hYKwqmSjrummJECBVpWhpBVNl03Bb8aphQnBJmGxbYVqogZ-jLwffYdr00Ng8TjSdHqLrTdzpYJz-V_Huu96GV80FL2mpssHVm0EMPydIo-5dstB1xkOYkqa5PcnqSrKMXh9QG0NKEdpjGUr0Piydw9L7sPQhrPzj09_dHfk_6WSgPgCQd_TqIOpkHXgLjYtgR90E91_z3-gXpIs</recordid><startdate>20120824</startdate><enddate>20120824</enddate><creator>Yuan, Minsheng</creator><creator>Pino, Elizabeth</creator><creator>Wu, Lianfeng</creator><creator>Kacergis, Michael</creator><creator>Soukas, Alexander A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120824</creationdate><title>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</title><author>Yuan, Minsheng ; Pino, Elizabeth ; Wu, Lianfeng ; Kacergis, Michael ; Soukas, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fe84035812b02eac8624699df044e587816c4286dd3c737d24435025ff4afe9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Akt</topic><topic>Animals</topic><topic>Cholesterol - biosynthesis</topic><topic>Cholesterol - genetics</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gluconeogenesis</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance - physiology</topic><topic>Lipogenesis</topic><topic>Lipogenesis - physiology</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mTOR Complex (mTORC)</topic><topic>mTOR Complex 2 (mTORC2)</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - physiology</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberous Sclerosis Complex 2 Protein</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Minsheng</creatorcontrib><creatorcontrib>Pino, Elizabeth</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kacergis, Michael</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Minsheng</au><au>Pino, Elizabeth</au><au>Wu, Lianfeng</au><au>Kacergis, Michael</au><au>Soukas, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-08-24</date><risdate>2012</risdate><volume>287</volume><issue>35</issue><spage>29579</spage><epage>29588</epage><pages>29579-29588</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (LrictorKO) are unable to respond normally to insulin. In response to insulin, LrictorKO mice failed to inhibit hepatic glucose output. LrictorKO mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. LrictorKO mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. LrictorKO mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of LrictorKO mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.
Background: mTORC2 is an insulin-stimulated kinase that activates kinases such as Akt.
Results: Hepatic mTORC2 deletion increased glucose output dependent on Akt-FoxO and blocked lipogenesis that was not restored by activation of Akt-FoxO signaling.
Conclusion: mTORC2-dependent factors other than Akt are critical for hepatic lipogenesis.
Significance: Understanding signals separating hepatic glucose output from lipogenesis is crucial for effective diabetes treatment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22773877</pmid><doi>10.1074/jbc.M112.386854</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-08, Vol.287 (35), p.29579-29588 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3436168 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Akt Animals Cholesterol - biosynthesis Cholesterol - genetics Fatty Acids - genetics Fatty Acids - metabolism Forkhead Box Protein O1 Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism Gene Expression Regulation - physiology Gluconeogenesis Glucose - genetics Glucose - metabolism Glycogen Synthase Kinase 3 - genetics Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Hep G2 Cells Humans Insulin Insulin - genetics Insulin - metabolism Insulin Resistance - physiology Lipogenesis Lipogenesis - physiology Liver - metabolism Metabolism Mice Mice, Transgenic mTOR Complex (mTORC) mTOR Complex 2 (mTORC2) Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation - physiology Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Sterol Regulatory Element Binding Protein 1 - genetics Sterol Regulatory Element Binding Protein 1 - metabolism Sterol Regulatory Element Binding Protein 2 - genetics Sterol Regulatory Element Binding Protein 2 - metabolism Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism Tuberous Sclerosis Complex 2 Protein Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Akt-independent%20Regulation%20of%20Hepatic%20Lipogenesis%20by%20Mammalian%20Target%20of%20Rapamycin%20(mTOR)%20Complex%202&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yuan,%20Minsheng&rft.date=2012-08-24&rft.volume=287&rft.issue=35&rft.spage=29579&rft.epage=29588&rft.pages=29579-29588&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.386854&rft_dat=%3Cproquest_pubme%3E1035529752%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035529752&rft_id=info:pmid/22773877&rft_els_id=S0021925820632215&rfr_iscdi=true |