How Random are Online Social Interactions?
The massive amounts of data that social media generates has facilitated the study of online human behavior on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with which people interact online makes it appear as if these studies cannot reveal predictive...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2012-09, Vol.2 (1), p.633-633, Article 633 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | 1 |
container_start_page | 633 |
container_title | Scientific reports |
container_volume | 2 |
creator | Wang, Chunyan Huberman, Bernardo A. |
description | The massive amounts of data that social media generates has facilitated the study of online human behavior on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with which people interact online makes it appear as if these studies cannot reveal predictive social behaviors that could be used for developing better platforms and services. We use two large social databases to measure the mutual information entropy that both individual and group actions generate as they evolve over time. We show that user's interaction sequences have strong deterministic components, in contrast with existing assumptions and models. In addition, we show that individual interactions are more predictable when users act on their own rather than when attending group activities. |
doi_str_mv | 10.1038/srep00633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3433691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897401490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-6242c02114d1b386b662eb36ff6813544b3be1d317878392320b5505dd74a2023</originalsourceid><addsrcrecordid>eNplkVtLwzAYhoMobsxd-Aek4I0Oqjm3uVFkqBsMBh6uQ9qms6NNZtIq_nujm2NqbhL4Hp68eQPAMYIXCJL00ju9gpATsgf6GFIWY4Lx_s65B4beL2FYDAuKxCHoYSwYgYz2wWhi36MHZQrbRMrpaG7qyujo0eaVqqOpabVTeVtZ46-PwEGpaq-Hm30Anu9un8aTeDa_n45vZnFOSdrGHFOcQ4wQLVBGUp5xjnVGeFnyFBFGaUYyjQqCkjRJiQgJYcYYZEWRUIUhJgNwtfauuqzRRa5N61QtV65qlPuQVlXy98RUL3Jh3yShhHCBguBsI3D2tdO-lU3lc13XymjbeflVGxOpECKgp3_Qpe2cCc-TKBUJhYgKGKjzNZU760Pf5TYMgt82uf2EwJ7spt-SP5UHYLQGfBiZhXY7V_6zfQJo1I0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897401490</pqid></control><display><type>article</type><title>How Random are Online Social Interactions?</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Chunyan ; Huberman, Bernardo A.</creator><creatorcontrib>Wang, Chunyan ; Huberman, Bernardo A.</creatorcontrib><description>The massive amounts of data that social media generates has facilitated the study of online human behavior on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with which people interact online makes it appear as if these studies cannot reveal predictive social behaviors that could be used for developing better platforms and services. We use two large social databases to measure the mutual information entropy that both individual and group actions generate as they evolve over time. We show that user's interaction sequences have strong deterministic components, in contrast with existing assumptions and models. In addition, we show that individual interactions are more predictable when users act on their own rather than when attending group activities.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep00633</identifier><identifier>PMID: 22953054</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/531 ; 639/766/25 ; 639/766/259 ; 639/766/530 ; Algorithms ; Applied physics ; Data Interpretation, Statistical ; Datasets ; Entropy ; Humanities and Social Sciences ; Humans ; Information Theory ; Internet ; Likelihood Functions ; Models, Biological ; multidisciplinary ; Nonlinear Dynamics ; Science ; Social Behavior ; Social interactions ; Social Media ; Social networks ; User behavior</subject><ispartof>Scientific reports, 2012-09, Vol.2 (1), p.633-633, Article 633</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><rights>Copyright © 2012, Macmillan Publishers Limited. All rights reserved 2012 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-6242c02114d1b386b662eb36ff6813544b3be1d317878392320b5505dd74a2023</citedby><cites>FETCH-LOGICAL-c438t-6242c02114d1b386b662eb36ff6813544b3be1d317878392320b5505dd74a2023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433691/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433691/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22953054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Huberman, Bernardo A.</creatorcontrib><title>How Random are Online Social Interactions?</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The massive amounts of data that social media generates has facilitated the study of online human behavior on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with which people interact online makes it appear as if these studies cannot reveal predictive social behaviors that could be used for developing better platforms and services. We use two large social databases to measure the mutual information entropy that both individual and group actions generate as they evolve over time. We show that user's interaction sequences have strong deterministic components, in contrast with existing assumptions and models. In addition, we show that individual interactions are more predictable when users act on their own rather than when attending group activities.</description><subject>639/705/531</subject><subject>639/766/25</subject><subject>639/766/259</subject><subject>639/766/530</subject><subject>Algorithms</subject><subject>Applied physics</subject><subject>Data Interpretation, Statistical</subject><subject>Datasets</subject><subject>Entropy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Information Theory</subject><subject>Internet</subject><subject>Likelihood Functions</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nonlinear Dynamics</subject><subject>Science</subject><subject>Social Behavior</subject><subject>Social interactions</subject><subject>Social Media</subject><subject>Social networks</subject><subject>User behavior</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkVtLwzAYhoMobsxd-Aek4I0Oqjm3uVFkqBsMBh6uQ9qms6NNZtIq_nujm2NqbhL4Hp68eQPAMYIXCJL00ju9gpATsgf6GFIWY4Lx_s65B4beL2FYDAuKxCHoYSwYgYz2wWhi36MHZQrbRMrpaG7qyujo0eaVqqOpabVTeVtZ46-PwEGpaq-Hm30Anu9un8aTeDa_n45vZnFOSdrGHFOcQ4wQLVBGUp5xjnVGeFnyFBFGaUYyjQqCkjRJiQgJYcYYZEWRUIUhJgNwtfauuqzRRa5N61QtV65qlPuQVlXy98RUL3Jh3yShhHCBguBsI3D2tdO-lU3lc13XymjbeflVGxOpECKgp3_Qpe2cCc-TKBUJhYgKGKjzNZU760Pf5TYMgt82uf2EwJ7spt-SP5UHYLQGfBiZhXY7V_6zfQJo1I0-</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Wang, Chunyan</creator><creator>Huberman, Bernardo A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120905</creationdate><title>How Random are Online Social Interactions?</title><author>Wang, Chunyan ; Huberman, Bernardo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-6242c02114d1b386b662eb36ff6813544b3be1d317878392320b5505dd74a2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/705/531</topic><topic>639/766/25</topic><topic>639/766/259</topic><topic>639/766/530</topic><topic>Algorithms</topic><topic>Applied physics</topic><topic>Data Interpretation, Statistical</topic><topic>Datasets</topic><topic>Entropy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Information Theory</topic><topic>Internet</topic><topic>Likelihood Functions</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nonlinear Dynamics</topic><topic>Science</topic><topic>Social Behavior</topic><topic>Social interactions</topic><topic>Social Media</topic><topic>Social networks</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Huberman, Bernardo A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunyan</au><au>Huberman, Bernardo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Random are Online Social Interactions?</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2012-09-05</date><risdate>2012</risdate><volume>2</volume><issue>1</issue><spage>633</spage><epage>633</epage><pages>633-633</pages><artnum>633</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The massive amounts of data that social media generates has facilitated the study of online human behavior on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with which people interact online makes it appear as if these studies cannot reveal predictive social behaviors that could be used for developing better platforms and services. We use two large social databases to measure the mutual information entropy that both individual and group actions generate as they evolve over time. We show that user's interaction sequences have strong deterministic components, in contrast with existing assumptions and models. In addition, we show that individual interactions are more predictable when users act on their own rather than when attending group activities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22953054</pmid><doi>10.1038/srep00633</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2012-09, Vol.2 (1), p.633-633, Article 633 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3433691 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/705/531 639/766/25 639/766/259 639/766/530 Algorithms Applied physics Data Interpretation, Statistical Datasets Entropy Humanities and Social Sciences Humans Information Theory Internet Likelihood Functions Models, Biological multidisciplinary Nonlinear Dynamics Science Social Behavior Social interactions Social Media Social networks User behavior |
title | How Random are Online Social Interactions? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Random%20are%20Online%20Social%20Interactions?&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Chunyan&rft.date=2012-09-05&rft.volume=2&rft.issue=1&rft.spage=633&rft.epage=633&rft.pages=633-633&rft.artnum=633&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep00633&rft_dat=%3Cproquest_pubme%3E1897401490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897401490&rft_id=info:pmid/22953054&rfr_iscdi=true |