Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration

In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2012-01, Vol.2012 (2012), p.196-202
Hauptverfasser: Lin, Chen-Lun, Mimori, Aya, Chen, Yen-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2012
container_start_page 196
container_title Computational Intelligence and Neuroscience
container_volume 2012
creator Lin, Chen-Lun
Mimori, Aya
Chen, Yen-Wei
description In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.
doi_str_mv 10.1155/2012/561406
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3432335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318999348</galeid><airiti_id>P20160527002_201212_201706200022_201706200022_196_202</airiti_id><sourcerecordid>A318999348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEoqVw4gyyxAUVLR3bseNckFalHytt1YqPs-U4ztaVE6d2QlX-epxNuypcOM34zU9PM3rOsrcYPmPM2BEBTI4YxznwZ9k-5qJYMFLQ57ues73sVYw3AKxgQF5me4SUZWrFflad31fB1uhKhcFqZ9D3OxVadNkPtrW_1WB9h1RXo9UQ0bLvndWzNnh0MboE-Vo5RL-iC1OnmUOrVm0M-mY2Ng5hy77OXjTKRfPmoR5kP09PfhyfL9aXZ6vj5XqhOOBhUWPOqaorXRSAQTPKhdZJoVopQnOdk9KoigKnOWtYSXgjOKFCYFIIQVlND7Ivs28_Vq2ptenSAk72wbYq3EuvrPx70tlrufG_JM0poZQlg48PBsHfjiYOsrVRG-dUZ_wYJQZeEhAFEQn9MKMb5Yy0XeOTo55wuaRYlGVJ84n6NFM6-BiDaXbLYJBTdnLKTs7ZJfr90_137GNYCTicgWvb1erO_sft3QybhJhG7eBcgODTset5rmywg5U3fgxdikdeJRcO6QcBkK0j3pYCOIEk_fPAJU8CoX8AOu69xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069208728</pqid></control><display><type>article</type><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei</creator><contributor>Jiang, Huiyan</contributor><creatorcontrib>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei ; Jiang, Huiyan</creatorcontrib><description>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2012/561406</identifier><identifier>PMID: 22997508</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Computational biology ; Diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Mathematical optimization ; Models, Genetic</subject><ispartof>Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.196-202</ispartof><rights>Copyright © 2012 Chen-Lun Lin et al.</rights><rights>COPYRIGHT 2012 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2012 Chen-Lun Lin et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</citedby><cites>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22997508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jiang, Huiyan</contributor><creatorcontrib>Lin, Chen-Lun</creatorcontrib><creatorcontrib>Mimori, Aya</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</description><subject>Algorithms</subject><subject>Computational biology</subject><subject>Diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Mathematical optimization</subject><subject>Models, Genetic</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEoqVw4gyyxAUVLR3bseNckFalHytt1YqPs-U4ztaVE6d2QlX-epxNuypcOM34zU9PM3rOsrcYPmPM2BEBTI4YxznwZ9k-5qJYMFLQ57ues73sVYw3AKxgQF5me4SUZWrFflad31fB1uhKhcFqZ9D3OxVadNkPtrW_1WB9h1RXo9UQ0bLvndWzNnh0MboE-Vo5RL-iC1OnmUOrVm0M-mY2Ng5hy77OXjTKRfPmoR5kP09PfhyfL9aXZ6vj5XqhOOBhUWPOqaorXRSAQTPKhdZJoVopQnOdk9KoigKnOWtYSXgjOKFCYFIIQVlND7Ivs28_Vq2ptenSAk72wbYq3EuvrPx70tlrufG_JM0poZQlg48PBsHfjiYOsrVRG-dUZ_wYJQZeEhAFEQn9MKMb5Yy0XeOTo55wuaRYlGVJ84n6NFM6-BiDaXbLYJBTdnLKTs7ZJfr90_137GNYCTicgWvb1erO_sft3QybhJhG7eBcgODTset5rmywg5U3fgxdikdeJRcO6QcBkK0j3pYCOIEk_fPAJU8CoX8AOu69xA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Lin, Chen-Lun</creator><creator>Mimori, Aya</creator><creator>Chen, Yen-Wei</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><author>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computational biology</topic><topic>Diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Mathematical optimization</topic><topic>Models, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chen-Lun</creatorcontrib><creatorcontrib>Mimori, Aya</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chen-Lun</au><au>Mimori, Aya</au><au>Chen, Yen-Wei</au><au>Jiang, Huiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>196</spage><epage>202</epage><pages>196-202</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>22997508</pmid><doi>10.1155/2012/561406</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.196-202
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3432335
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Computational biology
Diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Mathematical optimization
Models, Genetic
title Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Particle%20Swarm%20Optimization%20and%20Its%20Application%20to%20Multimodal%203D%20Medical%20Image%20Registration&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Lin,%20Chen-Lun&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=196&rft.epage=202&rft.pages=196-202&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2012/561406&rft_dat=%3Cgale_pubme%3EA318999348%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069208728&rft_id=info:pmid/22997508&rft_galeid=A318999348&rft_airiti_id=P20160527002_201212_201706200022_201706200022_196_202&rfr_iscdi=true