Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration
In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently use...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2012-01, Vol.2012 (2012), p.196-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2012 |
container_start_page | 196 |
container_title | Computational Intelligence and Neuroscience |
container_volume | 2012 |
creator | Lin, Chen-Lun Mimori, Aya Chen, Yen-Wei |
description | In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover. |
doi_str_mv | 10.1155/2012/561406 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3432335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318999348</galeid><airiti_id>P20160527002_201212_201706200022_201706200022_196_202</airiti_id><sourcerecordid>A318999348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEoqVw4gyyxAUVLR3bseNckFalHytt1YqPs-U4ztaVE6d2QlX-epxNuypcOM34zU9PM3rOsrcYPmPM2BEBTI4YxznwZ9k-5qJYMFLQ57ues73sVYw3AKxgQF5me4SUZWrFflad31fB1uhKhcFqZ9D3OxVadNkPtrW_1WB9h1RXo9UQ0bLvndWzNnh0MboE-Vo5RL-iC1OnmUOrVm0M-mY2Ng5hy77OXjTKRfPmoR5kP09PfhyfL9aXZ6vj5XqhOOBhUWPOqaorXRSAQTPKhdZJoVopQnOdk9KoigKnOWtYSXgjOKFCYFIIQVlND7Ivs28_Vq2ptenSAk72wbYq3EuvrPx70tlrufG_JM0poZQlg48PBsHfjiYOsrVRG-dUZ_wYJQZeEhAFEQn9MKMb5Yy0XeOTo55wuaRYlGVJ84n6NFM6-BiDaXbLYJBTdnLKTs7ZJfr90_137GNYCTicgWvb1erO_sft3QybhJhG7eBcgODTset5rmywg5U3fgxdikdeJRcO6QcBkK0j3pYCOIEk_fPAJU8CoX8AOu69xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069208728</pqid></control><display><type>article</type><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei</creator><contributor>Jiang, Huiyan</contributor><creatorcontrib>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei ; Jiang, Huiyan</creatorcontrib><description>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2012/561406</identifier><identifier>PMID: 22997508</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Computational biology ; Diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Mathematical optimization ; Models, Genetic</subject><ispartof>Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.196-202</ispartof><rights>Copyright © 2012 Chen-Lun Lin et al.</rights><rights>COPYRIGHT 2012 John Wiley & Sons, Inc.</rights><rights>Copyright © 2012 Chen-Lun Lin et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</citedby><cites>FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22997508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jiang, Huiyan</contributor><creatorcontrib>Lin, Chen-Lun</creatorcontrib><creatorcontrib>Mimori, Aya</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</description><subject>Algorithms</subject><subject>Computational biology</subject><subject>Diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Mathematical optimization</subject><subject>Models, Genetic</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEoqVw4gyyxAUVLR3bseNckFalHytt1YqPs-U4ztaVE6d2QlX-epxNuypcOM34zU9PM3rOsrcYPmPM2BEBTI4YxznwZ9k-5qJYMFLQ57ues73sVYw3AKxgQF5me4SUZWrFflad31fB1uhKhcFqZ9D3OxVadNkPtrW_1WB9h1RXo9UQ0bLvndWzNnh0MboE-Vo5RL-iC1OnmUOrVm0M-mY2Ng5hy77OXjTKRfPmoR5kP09PfhyfL9aXZ6vj5XqhOOBhUWPOqaorXRSAQTPKhdZJoVopQnOdk9KoigKnOWtYSXgjOKFCYFIIQVlND7Ivs28_Vq2ptenSAk72wbYq3EuvrPx70tlrufG_JM0poZQlg48PBsHfjiYOsrVRG-dUZ_wYJQZeEhAFEQn9MKMb5Yy0XeOTo55wuaRYlGVJ84n6NFM6-BiDaXbLYJBTdnLKTs7ZJfr90_137GNYCTicgWvb1erO_sft3QybhJhG7eBcgODTset5rmywg5U3fgxdikdeJRcO6QcBkK0j3pYCOIEk_fPAJU8CoX8AOu69xA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Lin, Chen-Lun</creator><creator>Mimori, Aya</creator><creator>Chen, Yen-Wei</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</title><author>Lin, Chen-Lun ; Mimori, Aya ; Chen, Yen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a601t-d1663adbc77010c5368cc63a3caa234c429eab306345f5926f8623881278835d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computational biology</topic><topic>Diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Mathematical optimization</topic><topic>Models, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chen-Lun</creatorcontrib><creatorcontrib>Mimori, Aya</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chen-Lun</au><au>Mimori, Aya</au><au>Chen, Yen-Wei</au><au>Jiang, Huiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>196</spage><epage>202</epage><pages>196-202</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In the area of medical image analysis, 3D multimodality image registration is an important issue. In the processing of registration, an optimization approach has been applied to estimate the transformation of the reference image and target image. Some local optimization techniques are frequently used, such as the gradient descent method. However, these methods need a good initial value in order to avoid the local resolution. In this paper, we present a new improved global optimization approach named hybrid particle swarm optimization (HPSO) for medical image registration, which includes two concepts of genetic algorithms—subpopulation and crossover.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>22997508</pmid><doi>10.1155/2012/561406</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.196-202 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3432335 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Computational biology Diagnostic imaging Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Mathematical optimization Models, Genetic |
title | Hybrid Particle Swarm Optimization and Its Application to Multimodal 3D Medical Image Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Particle%20Swarm%20Optimization%20and%20Its%20Application%20to%20Multimodal%203D%20Medical%20Image%20Registration&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Lin,%20Chen-Lun&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=196&rft.epage=202&rft.pages=196-202&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2012/561406&rft_dat=%3Cgale_pubme%3EA318999348%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069208728&rft_id=info:pmid/22997508&rft_galeid=A318999348&rft_airiti_id=P20160527002_201212_201706200022_201706200022_196_202&rfr_iscdi=true |