Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1
WIF-1 inhibits Wnt signaling by binding Wnt ligands. Structural and biochemical analysis of WIF-1 shows the EGF-like domains wrapping back to contact the ligand-binding WD domain, which also binds a phospholipid near the interaction site for Wnt ligands. The tail of EGF-like domains also harbors a p...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2011-08, Vol.18 (8), p.886-893 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 893 |
---|---|
container_issue | 8 |
container_start_page | 886 |
container_title | Nature structural & molecular biology |
container_volume | 18 |
creator | Siebold, Christian Jones, E Yvonne Malinauskas, Tomas Aricescu, A Radu Lu, Weixian |
description | WIF-1 inhibits Wnt signaling by binding Wnt ligands. Structural and biochemical analysis of WIF-1 shows the EGF-like domains wrapping back to contact the ligand-binding WD domain, which also binds a phospholipid near the interaction site for Wnt ligands. The tail of EGF-like domains also harbors a proteoglycan binding site, indicating that all domains of WIF-1 contribute to the regulation of Wnt signaling
in vivo
.
Wnt morphogens control embryonic development and homeostasis in adult tissues. In vertebrates the N-terminal WIF domain (WIF-1
WD
) of Wnt inhibitory factor 1 (WIF-1) binds Wnt ligands. Our crystal structure of WIF-1
WD
reveals a previously unidentified binding site for phospholipid; two acyl chains extend deep into the domain, and the head group is exposed to the surface. Biophysical and cellular assays indicate that there is a WIF-1
WD
Wnt-binding surface proximal to the lipid head group but also implicate the five epidermal growth factor (EGF)-like domains (EGFs I–V) in Wnt binding. The six-domain WIF-1 crystal structure shows that EGFs I–V are wrapped back, interfacing with WIF-1
WD
at EGF III. EGFs II–V contain a heparan sulfate proteoglycan (HSPG)-binding site, consistent with conserved positively charged residues on EGF IV. This combination of HSPG- and Wnt-binding properties suggests a modular model for the localization of WIF-1 and for signal inhibition within morphogen gradients. |
doi_str_mv | 10.1038/nsmb.2081 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3430870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A264271635</galeid><sourcerecordid>A264271635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-5e05749085f4ff4431e6d7253c181ad1256718e3e5afeb84cd521de5faa0fc7b3</originalsourceid><addsrcrecordid>eNptkk2LFDEQhoMo7jp68A9oowdRmDGf3emLsCzqLqwIfuAxpNOVnizdyW7SLc6_N-2Ms44MOVSoeuqtpHgRekrwimAm3_o0NCuKJbmHTongYlnXUtzf32t2gh6ldI0xFaJiD9EJJRVnXIhTdPEptFOvYzGAWWvv0lAEW_zwY5Fc53XvfFc4v3aNG13wRbP5U9tlQtwUVpscC_IYPbC6T_BkFxfo-4f3384vllefP16en10tTUmrcSkAi4rXWArLreWcESjbigpmiCS6JVSUFZHAQGgLjeSmFZS0IKzW2JqqYQv0bqt7MzUDtAb8GHWvbqIbdNyooJ06rHi3Vl34qRhnWFY4C7zaCcRwO0Ea1eCSgb7XHsKUlJQEy1LimXzxH3kdppiXkqFaUoFpfv8CvdxCne5BOW9DnmpmSXVGS04rUjKRqdURKp8WBmeCB-ty_qDh9UFDZkb4NXZ6Skldfv1ylDUxpBTB7rdBsJoNomaDqNkgmX327_r25F9HZODNFki55DuId58-pvZ8C3s9ThH2anfEbzN7zfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898250244</pqid></control><display><type>article</type><title>Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Siebold, Christian ; Jones, E Yvonne ; Malinauskas, Tomas ; Aricescu, A Radu ; Lu, Weixian</creator><creatorcontrib>Siebold, Christian ; Jones, E Yvonne ; Malinauskas, Tomas ; Aricescu, A Radu ; Lu, Weixian</creatorcontrib><description>WIF-1 inhibits Wnt signaling by binding Wnt ligands. Structural and biochemical analysis of WIF-1 shows the EGF-like domains wrapping back to contact the ligand-binding WD domain, which also binds a phospholipid near the interaction site for Wnt ligands. The tail of EGF-like domains also harbors a proteoglycan binding site, indicating that all domains of WIF-1 contribute to the regulation of Wnt signaling
in vivo
.
Wnt morphogens control embryonic development and homeostasis in adult tissues. In vertebrates the N-terminal WIF domain (WIF-1
WD
) of Wnt inhibitory factor 1 (WIF-1) binds Wnt ligands. Our crystal structure of WIF-1
WD
reveals a previously unidentified binding site for phospholipid; two acyl chains extend deep into the domain, and the head group is exposed to the surface. Biophysical and cellular assays indicate that there is a WIF-1
WD
Wnt-binding surface proximal to the lipid head group but also implicate the five epidermal growth factor (EGF)-like domains (EGFs I–V) in Wnt binding. The six-domain WIF-1 crystal structure shows that EGFs I–V are wrapped back, interfacing with WIF-1
WD
at EGF III. EGFs II–V contain a heparan sulfate proteoglycan (HSPG)-binding site, consistent with conserved positively charged residues on EGF IV. This combination of HSPG- and Wnt-binding properties suggests a modular model for the localization of WIF-1 and for signal inhibition within morphogen gradients.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2081</identifier><identifier>PMID: 21743455</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/535 ; 631/80/86 ; Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - metabolism ; Adaptor Proteins, Signal Transducing - physiology ; Amino Acid Motifs ; Binding Sites ; Binding sites (Biochemistry) ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell adhesion & migration ; Cellular signal transduction ; Crystal structure ; Embryonic growth stage ; Glycosaminoglycans - chemistry ; Glycosaminoglycans - metabolism ; HEK293 Cells ; Homeostasis ; Humans ; Life Sciences ; Ligands ; Lipid Metabolism ; Membrane Biology ; Models, Molecular ; Molecular biology ; Morphogenesis ; Physiological aspects ; Protein Folding ; Protein Structure ; Protein Structure, Tertiary ; Repressor Proteins - chemistry ; Repressor Proteins - metabolism ; Repressor Proteins - physiology ; Signal Transduction ; Sulfates ; Vertebrates ; Wnt proteins ; Wnt Proteins - chemistry ; Wnt Proteins - physiology</subject><ispartof>Nature structural & molecular biology, 2011-08, Vol.18 (8), p.886-893</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-5e05749085f4ff4431e6d7253c181ad1256718e3e5afeb84cd521de5faa0fc7b3</citedby><cites>FETCH-LOGICAL-c627t-5e05749085f4ff4431e6d7253c181ad1256718e3e5afeb84cd521de5faa0fc7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21743455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>Jones, E Yvonne</creatorcontrib><creatorcontrib>Malinauskas, Tomas</creatorcontrib><creatorcontrib>Aricescu, A Radu</creatorcontrib><creatorcontrib>Lu, Weixian</creatorcontrib><title>Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>WIF-1 inhibits Wnt signaling by binding Wnt ligands. Structural and biochemical analysis of WIF-1 shows the EGF-like domains wrapping back to contact the ligand-binding WD domain, which also binds a phospholipid near the interaction site for Wnt ligands. The tail of EGF-like domains also harbors a proteoglycan binding site, indicating that all domains of WIF-1 contribute to the regulation of Wnt signaling
in vivo
.
Wnt morphogens control embryonic development and homeostasis in adult tissues. In vertebrates the N-terminal WIF domain (WIF-1
WD
) of Wnt inhibitory factor 1 (WIF-1) binds Wnt ligands. Our crystal structure of WIF-1
WD
reveals a previously unidentified binding site for phospholipid; two acyl chains extend deep into the domain, and the head group is exposed to the surface. Biophysical and cellular assays indicate that there is a WIF-1
WD
Wnt-binding surface proximal to the lipid head group but also implicate the five epidermal growth factor (EGF)-like domains (EGFs I–V) in Wnt binding. The six-domain WIF-1 crystal structure shows that EGFs I–V are wrapped back, interfacing with WIF-1
WD
at EGF III. EGFs II–V contain a heparan sulfate proteoglycan (HSPG)-binding site, consistent with conserved positively charged residues on EGF IV. This combination of HSPG- and Wnt-binding properties suggests a modular model for the localization of WIF-1 and for signal inhibition within morphogen gradients.</description><subject>631/45/535</subject><subject>631/80/86</subject><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - physiology</subject><subject>Amino Acid Motifs</subject><subject>Binding Sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell adhesion & migration</subject><subject>Cellular signal transduction</subject><subject>Crystal structure</subject><subject>Embryonic growth stage</subject><subject>Glycosaminoglycans - chemistry</subject><subject>Glycosaminoglycans - metabolism</subject><subject>HEK293 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Lipid Metabolism</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Morphogenesis</subject><subject>Physiological aspects</subject><subject>Protein Folding</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - metabolism</subject><subject>Repressor Proteins - physiology</subject><subject>Signal Transduction</subject><subject>Sulfates</subject><subject>Vertebrates</subject><subject>Wnt proteins</subject><subject>Wnt Proteins - chemistry</subject><subject>Wnt Proteins - physiology</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk2LFDEQhoMo7jp68A9oowdRmDGf3emLsCzqLqwIfuAxpNOVnizdyW7SLc6_N-2Ms44MOVSoeuqtpHgRekrwimAm3_o0NCuKJbmHTongYlnXUtzf32t2gh6ldI0xFaJiD9EJJRVnXIhTdPEptFOvYzGAWWvv0lAEW_zwY5Fc53XvfFc4v3aNG13wRbP5U9tlQtwUVpscC_IYPbC6T_BkFxfo-4f3384vllefP16en10tTUmrcSkAi4rXWArLreWcESjbigpmiCS6JVSUFZHAQGgLjeSmFZS0IKzW2JqqYQv0bqt7MzUDtAb8GHWvbqIbdNyooJ06rHi3Vl34qRhnWFY4C7zaCcRwO0Ea1eCSgb7XHsKUlJQEy1LimXzxH3kdppiXkqFaUoFpfv8CvdxCne5BOW9DnmpmSXVGS04rUjKRqdURKp8WBmeCB-ty_qDh9UFDZkb4NXZ6Skldfv1ylDUxpBTB7rdBsJoNomaDqNkgmX327_r25F9HZODNFki55DuId58-pvZ8C3s9ThH2anfEbzN7zfM</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Siebold, Christian</creator><creator>Jones, E Yvonne</creator><creator>Malinauskas, Tomas</creator><creator>Aricescu, A Radu</creator><creator>Lu, Weixian</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1</title><author>Siebold, Christian ; Jones, E Yvonne ; Malinauskas, Tomas ; Aricescu, A Radu ; Lu, Weixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-5e05749085f4ff4431e6d7253c181ad1256718e3e5afeb84cd521de5faa0fc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/45/535</topic><topic>631/80/86</topic><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - physiology</topic><topic>Amino Acid Motifs</topic><topic>Binding Sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell adhesion & migration</topic><topic>Cellular signal transduction</topic><topic>Crystal structure</topic><topic>Embryonic growth stage</topic><topic>Glycosaminoglycans - chemistry</topic><topic>Glycosaminoglycans - metabolism</topic><topic>HEK293 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Lipid Metabolism</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Morphogenesis</topic><topic>Physiological aspects</topic><topic>Protein Folding</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - metabolism</topic><topic>Repressor Proteins - physiology</topic><topic>Signal Transduction</topic><topic>Sulfates</topic><topic>Vertebrates</topic><topic>Wnt proteins</topic><topic>Wnt Proteins - chemistry</topic><topic>Wnt Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>Jones, E Yvonne</creatorcontrib><creatorcontrib>Malinauskas, Tomas</creatorcontrib><creatorcontrib>Aricescu, A Radu</creatorcontrib><creatorcontrib>Lu, Weixian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebold, Christian</au><au>Jones, E Yvonne</au><au>Malinauskas, Tomas</au><au>Aricescu, A Radu</au><au>Lu, Weixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>18</volume><issue>8</issue><spage>886</spage><epage>893</epage><pages>886-893</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>WIF-1 inhibits Wnt signaling by binding Wnt ligands. Structural and biochemical analysis of WIF-1 shows the EGF-like domains wrapping back to contact the ligand-binding WD domain, which also binds a phospholipid near the interaction site for Wnt ligands. The tail of EGF-like domains also harbors a proteoglycan binding site, indicating that all domains of WIF-1 contribute to the regulation of Wnt signaling
in vivo
.
Wnt morphogens control embryonic development and homeostasis in adult tissues. In vertebrates the N-terminal WIF domain (WIF-1
WD
) of Wnt inhibitory factor 1 (WIF-1) binds Wnt ligands. Our crystal structure of WIF-1
WD
reveals a previously unidentified binding site for phospholipid; two acyl chains extend deep into the domain, and the head group is exposed to the surface. Biophysical and cellular assays indicate that there is a WIF-1
WD
Wnt-binding surface proximal to the lipid head group but also implicate the five epidermal growth factor (EGF)-like domains (EGFs I–V) in Wnt binding. The six-domain WIF-1 crystal structure shows that EGFs I–V are wrapped back, interfacing with WIF-1
WD
at EGF III. EGFs II–V contain a heparan sulfate proteoglycan (HSPG)-binding site, consistent with conserved positively charged residues on EGF IV. This combination of HSPG- and Wnt-binding properties suggests a modular model for the localization of WIF-1 and for signal inhibition within morphogen gradients.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21743455</pmid><doi>10.1038/nsmb.2081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2011-08, Vol.18 (8), p.886-893 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3430870 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/45/535 631/80/86 Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - metabolism Adaptor Proteins, Signal Transducing - physiology Amino Acid Motifs Binding Sites Binding sites (Biochemistry) Biochemistry Biological Microscopy Biomedical and Life Sciences Cell adhesion & migration Cellular signal transduction Crystal structure Embryonic growth stage Glycosaminoglycans - chemistry Glycosaminoglycans - metabolism HEK293 Cells Homeostasis Humans Life Sciences Ligands Lipid Metabolism Membrane Biology Models, Molecular Molecular biology Morphogenesis Physiological aspects Protein Folding Protein Structure Protein Structure, Tertiary Repressor Proteins - chemistry Repressor Proteins - metabolism Repressor Proteins - physiology Signal Transduction Sulfates Vertebrates Wnt proteins Wnt Proteins - chemistry Wnt Proteins - physiology |
title | Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20mechanism%20of%20Wnt%20signaling%20inhibition%20by%20Wnt%20inhibitory%20factor%201&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Siebold,%20Christian&rft.date=2011-08-01&rft.volume=18&rft.issue=8&rft.spage=886&rft.epage=893&rft.pages=886-893&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2081&rft_dat=%3Cgale_pubme%3EA264271635%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898250244&rft_id=info:pmid/21743455&rft_galeid=A264271635&rfr_iscdi=true |