Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice
A selective, short-acting agonist for the sphingosine-1-phosphate receptor S1P 1 and GFP-S1P 1 knock-in mouse model are used to show that both receptor degradation and receptor reserve underlie the mechanisms of lymphocyte sequestration by agonists. Sphingosine 1-phosphate receptor 1 (S1P 1 ) is cri...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2011-05, Vol.7 (5), p.254-256 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 5 |
container_start_page | 254 |
container_title | Nature chemical biology |
container_volume | 7 |
creator | Cahalan, Stuart M Gonzalez-Cabrera, Pedro J Sarkisyan, Gor Nguyen, Nhan Schaeffer, Marie-Therese Huang, Liming Yeager, Adam Clemons, Bryan Scott, Fiona Rosen, Hugh |
description | A selective, short-acting agonist for the sphingosine-1-phosphate receptor S1P
1
and GFP-S1P
1
knock-in mouse model are used to show that both receptor degradation and receptor reserve underlie the mechanisms of lymphocyte sequestration by agonists.
Sphingosine 1-phosphate receptor 1 (S1P
1
) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P
1
agonist and mice in which fluorescently tagged S1P
1
replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P
1
at a subcellular level
in vivo
. We demonstrate differential downregulation of S1P
1
on lymphocytes and endothelia after agonist treatment. |
doi_str_mv | 10.1038/nchembio.547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3430385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325615831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-ce51187e6ed4072cce145ea40de7094e83b167b355cc98fdc9c5cbc019e53e793</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWqs3z7J4dmuy2Wx2L4IUv1CwoJ5DdnbaRrtJTbaC_72ptVXB03y8H2-GR8gRowNGeXlmYYptbdxA5HKL9JgQWZrnRbW96QXdI_shvFDKi4KVu2QvY8utkD1ydwGdcTYkbpzoZG7AtW6mfRKmznepjqKdJI9sxBI9cdaELjH2a07x-mqUvFoHr2lctQbwgOyM9Szg4Xftk-ery6fhTXr_cH07vLhPgYtKpoCCsVJigU1OZQaALBeoc9qgpFWOJa9ZIWsuBEBVjhuoQEANlFUoOMqK98n5yne-qFtsAG3n9UzNvWm1_1BOG_VXsWaqJu5d8ZzHxEQ0OPk28O5tgaFTL27hbfxZlUVW0rKQWYROVxB4F4LH8eYAo2qZvFonr2LyET_-_dQGXkcdgXQFhCjZCfqfo_8afgL6l4-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862808672</pqid></control><display><type>article</type><title>Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice</title><source>MEDLINE</source><source>Nature Research</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cahalan, Stuart M ; Gonzalez-Cabrera, Pedro J ; Sarkisyan, Gor ; Nguyen, Nhan ; Schaeffer, Marie-Therese ; Huang, Liming ; Yeager, Adam ; Clemons, Bryan ; Scott, Fiona ; Rosen, Hugh</creator><creatorcontrib>Cahalan, Stuart M ; Gonzalez-Cabrera, Pedro J ; Sarkisyan, Gor ; Nguyen, Nhan ; Schaeffer, Marie-Therese ; Huang, Liming ; Yeager, Adam ; Clemons, Bryan ; Scott, Fiona ; Rosen, Hugh</creatorcontrib><description>A selective, short-acting agonist for the sphingosine-1-phosphate receptor S1P
1
and GFP-S1P
1
knock-in mouse model are used to show that both receptor degradation and receptor reserve underlie the mechanisms of lymphocyte sequestration by agonists.
Sphingosine 1-phosphate receptor 1 (S1P
1
) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P
1
agonist and mice in which fluorescently tagged S1P
1
replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P
1
at a subcellular level
in vivo
. We demonstrate differential downregulation of S1P
1
on lymphocytes and endothelia after agonist treatment.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.547</identifier><identifier>PMID: 21445057</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/1619 ; 631/92/609 ; 692/699/249/1313/1666 ; Animals ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; brief-communication ; Cell Biology ; Cellular biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Down-Regulation - drug effects ; Endothelium - drug effects ; Endothelium - metabolism ; Flow Cytometry ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Gene expression ; Gene Knock-In Techniques ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - metabolism ; Lymphocytes ; Lymphocytes - drug effects ; Lymphocytes - metabolism ; Mice ; Multiple sclerosis ; Multiple Sclerosis - drug therapy ; Multiple Sclerosis - metabolism ; Multiple Sclerosis - pathology ; Physiology ; Receptors, Lysosphingolipid - agonists ; Receptors, Lysosphingolipid - metabolism ; Receptors, Lysosphingolipid - therapeutic use ; Rodents ; Time Factors</subject><ispartof>Nature chemical biology, 2011-05, Vol.7 (5), p.254-256</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>Copyright Nature Publishing Group May 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-ce51187e6ed4072cce145ea40de7094e83b167b355cc98fdc9c5cbc019e53e793</citedby><cites>FETCH-LOGICAL-c3597-ce51187e6ed4072cce145ea40de7094e83b167b355cc98fdc9c5cbc019e53e793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.547$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.547$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21445057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cahalan, Stuart M</creatorcontrib><creatorcontrib>Gonzalez-Cabrera, Pedro J</creatorcontrib><creatorcontrib>Sarkisyan, Gor</creatorcontrib><creatorcontrib>Nguyen, Nhan</creatorcontrib><creatorcontrib>Schaeffer, Marie-Therese</creatorcontrib><creatorcontrib>Huang, Liming</creatorcontrib><creatorcontrib>Yeager, Adam</creatorcontrib><creatorcontrib>Clemons, Bryan</creatorcontrib><creatorcontrib>Scott, Fiona</creatorcontrib><creatorcontrib>Rosen, Hugh</creatorcontrib><title>Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>A selective, short-acting agonist for the sphingosine-1-phosphate receptor S1P
1
and GFP-S1P
1
knock-in mouse model are used to show that both receptor degradation and receptor reserve underlie the mechanisms of lymphocyte sequestration by agonists.
Sphingosine 1-phosphate receptor 1 (S1P
1
) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P
1
agonist and mice in which fluorescently tagged S1P
1
replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P
1
at a subcellular level
in vivo
. We demonstrate differential downregulation of S1P
1
on lymphocytes and endothelia after agonist treatment.</description><subject>631/250/1619</subject><subject>631/92/609</subject><subject>692/699/249/1313/1666</subject><subject>Animals</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>brief-communication</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Down-Regulation - drug effects</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - metabolism</subject><subject>Flow Cytometry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Gene expression</subject><subject>Gene Knock-In Techniques</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes - drug effects</subject><subject>Lymphocytes - metabolism</subject><subject>Mice</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Multiple Sclerosis - metabolism</subject><subject>Multiple Sclerosis - pathology</subject><subject>Physiology</subject><subject>Receptors, Lysosphingolipid - agonists</subject><subject>Receptors, Lysosphingolipid - metabolism</subject><subject>Receptors, Lysosphingolipid - therapeutic use</subject><subject>Rodents</subject><subject>Time Factors</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkM1LAzEQxYMoWqs3z7J4dmuy2Wx2L4IUv1CwoJ5DdnbaRrtJTbaC_72ptVXB03y8H2-GR8gRowNGeXlmYYptbdxA5HKL9JgQWZrnRbW96QXdI_shvFDKi4KVu2QvY8utkD1ydwGdcTYkbpzoZG7AtW6mfRKmznepjqKdJI9sxBI9cdaELjH2a07x-mqUvFoHr2lctQbwgOyM9Szg4Xftk-ery6fhTXr_cH07vLhPgYtKpoCCsVJigU1OZQaALBeoc9qgpFWOJa9ZIWsuBEBVjhuoQEANlFUoOMqK98n5yne-qFtsAG3n9UzNvWm1_1BOG_VXsWaqJu5d8ZzHxEQ0OPk28O5tgaFTL27hbfxZlUVW0rKQWYROVxB4F4LH8eYAo2qZvFonr2LyET_-_dQGXkcdgXQFhCjZCfqfo_8afgL6l4-s</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Cahalan, Stuart M</creator><creator>Gonzalez-Cabrera, Pedro J</creator><creator>Sarkisyan, Gor</creator><creator>Nguyen, Nhan</creator><creator>Schaeffer, Marie-Therese</creator><creator>Huang, Liming</creator><creator>Yeager, Adam</creator><creator>Clemons, Bryan</creator><creator>Scott, Fiona</creator><creator>Rosen, Hugh</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201105</creationdate><title>Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice</title><author>Cahalan, Stuart M ; Gonzalez-Cabrera, Pedro J ; Sarkisyan, Gor ; Nguyen, Nhan ; Schaeffer, Marie-Therese ; Huang, Liming ; Yeager, Adam ; Clemons, Bryan ; Scott, Fiona ; Rosen, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-ce51187e6ed4072cce145ea40de7094e83b167b355cc98fdc9c5cbc019e53e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/250/1619</topic><topic>631/92/609</topic><topic>692/699/249/1313/1666</topic><topic>Animals</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>brief-communication</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Down-Regulation - drug effects</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - metabolism</topic><topic>Flow Cytometry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Gene expression</topic><topic>Gene Knock-In Techniques</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes - drug effects</topic><topic>Lymphocytes - metabolism</topic><topic>Mice</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Multiple Sclerosis - metabolism</topic><topic>Multiple Sclerosis - pathology</topic><topic>Physiology</topic><topic>Receptors, Lysosphingolipid - agonists</topic><topic>Receptors, Lysosphingolipid - metabolism</topic><topic>Receptors, Lysosphingolipid - therapeutic use</topic><topic>Rodents</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cahalan, Stuart M</creatorcontrib><creatorcontrib>Gonzalez-Cabrera, Pedro J</creatorcontrib><creatorcontrib>Sarkisyan, Gor</creatorcontrib><creatorcontrib>Nguyen, Nhan</creatorcontrib><creatorcontrib>Schaeffer, Marie-Therese</creatorcontrib><creatorcontrib>Huang, Liming</creatorcontrib><creatorcontrib>Yeager, Adam</creatorcontrib><creatorcontrib>Clemons, Bryan</creatorcontrib><creatorcontrib>Scott, Fiona</creatorcontrib><creatorcontrib>Rosen, Hugh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cahalan, Stuart M</au><au>Gonzalez-Cabrera, Pedro J</au><au>Sarkisyan, Gor</au><au>Nguyen, Nhan</au><au>Schaeffer, Marie-Therese</au><au>Huang, Liming</au><au>Yeager, Adam</au><au>Clemons, Bryan</au><au>Scott, Fiona</au><au>Rosen, Hugh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2011-05</date><risdate>2011</risdate><volume>7</volume><issue>5</issue><spage>254</spage><epage>256</epage><pages>254-256</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>A selective, short-acting agonist for the sphingosine-1-phosphate receptor S1P
1
and GFP-S1P
1
knock-in mouse model are used to show that both receptor degradation and receptor reserve underlie the mechanisms of lymphocyte sequestration by agonists.
Sphingosine 1-phosphate receptor 1 (S1P
1
) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P
1
agonist and mice in which fluorescently tagged S1P
1
replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P
1
at a subcellular level
in vivo
. We demonstrate differential downregulation of S1P
1
on lymphocytes and endothelia after agonist treatment.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21445057</pmid><doi>10.1038/nchembio.547</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2011-05, Vol.7 (5), p.254-256 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3430385 |
source | MEDLINE; Nature Research; SpringerLink Journals - AutoHoldings |
subjects | 631/250/1619 631/92/609 692/699/249/1313/1666 Animals Biochemical Engineering Biochemistry Bioorganic Chemistry brief-communication Cell Biology Cellular biology Chemistry Chemistry and Materials Science Chemistry/Food Science Down-Regulation - drug effects Endothelium - drug effects Endothelium - metabolism Flow Cytometry Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Gene expression Gene Knock-In Techniques Green Fluorescent Proteins - chemistry Green Fluorescent Proteins - metabolism Lymphocytes Lymphocytes - drug effects Lymphocytes - metabolism Mice Multiple sclerosis Multiple Sclerosis - drug therapy Multiple Sclerosis - metabolism Multiple Sclerosis - pathology Physiology Receptors, Lysosphingolipid - agonists Receptors, Lysosphingolipid - metabolism Receptors, Lysosphingolipid - therapeutic use Rodents Time Factors |
title | Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actions%20of%20a%20picomolar%20short-acting%20S1P1%20agonist%20in%20S1P1-eGFP%20knock-in%20mice&rft.jtitle=Nature%20chemical%20biology&rft.au=Cahalan,%20Stuart%20M&rft.date=2011-05&rft.volume=7&rft.issue=5&rft.spage=254&rft.epage=256&rft.pages=254-256&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.547&rft_dat=%3Cproquest_pubme%3E2325615831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862808672&rft_id=info:pmid/21445057&rfr_iscdi=true |