Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation
Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Const...
Gespeichert in:
Veröffentlicht in: | Biometals 2009-12, Vol.22 (6), p.1051-1061 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1061 |
---|---|
container_issue | 6 |
container_start_page | 1051 |
container_title | Biometals |
container_volume | 22 |
creator | Pynyaha, Yuriy V Boretsky, Yuriy R Fedorovych, Daria V Fayura, Lubov R Levkiv, Andriy I Ubiyvovk, Vira M Protchenko, Olha V Philpott, Caroline C Sibirny, Andriy A |
description | Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii. |
doi_str_mv | 10.1007/s10534-009-9256-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900351521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</originalsourceid><addsrcrecordid>eNqFUsFu1DAQjRCILoUP4AIWB26BsR07yQWpKpQiVQIJeuBkOY6dnSqJWzupdj-LP8RpVhQ4wGmseW_ejGdelj2n8IYClG8jBcGLHKDOayZkvnuQbagoWV6VJX-YbaCWMoeqKI6yJzFeQSKWIB9nR7SWRS1kvcl-vLcODdrR7AmOxAU96V16bP3ge9_Nlnw_O6cLNG0t2VsdJ_IFzRY16Wbse7Rh8GOLSHqr20gmTwaMMdhu7vWEfiTeEQwpanMzY8S7nB5bErDxrte3SbpBH_djahAx3mHaOWumSOLcOz1ZomPEAVfBp9kjp_tonx3icXZ59uHb6Xl-8fnjp9OTi9wIUUx5VZSsEbIUknJjQQK1pgAH1jnJndZQgWgsa6qyKlOWaiF5C9LItmLaVYIfZ-9W3eu5GWxr7DgF3avrgIMOe-U1qj-REbeq87eKF6wCViaB1weB4G9mGyeVNmNs3-vR-jkqLrkUspD_JTLK6qKGRfHVX8QrP4cxbUExxoVMl2aJRFeSCX45hPs1MgW12EattlHJDWqxjdqlmhe___W-4uCTRGArISZo7Gy47_wv1ZdrkdNe6S5gVJdfGVAOtAReSMZ_Aq5n3LU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223568442</pqid></control><display><type>article</type><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</creator><creatorcontrib>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</creatorcontrib><description>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-009-9256-x</identifier><identifier>PMID: 19649569</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Carbon sources ; Cell Biology ; Cellular biology ; Frataxin ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; Glycerol - metabolism ; Hydrogen peroxide ; Hydrogen Peroxide - pharmacology ; Hypersensitivity ; Ion Transport - drug effects ; Ion Transport - genetics ; Iron ; Iron - metabolism ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Life Sciences ; Medicine/Public Health ; Metabolism ; Microbiology ; Mitochondria - metabolism ; Mutants ; Mutation ; Organisms, Genetically Modified - genetics ; Organisms, Genetically Modified - metabolism ; Oxygen uptake ; Pharmacology/Toxicology ; Pichia - genetics ; Pichia - metabolism ; Pichia guilliermondii ; Plant Physiology ; Proteins ; Riboflavin - biosynthesis ; Riboflavin - genetics ; Riboflavin - pharmacology ; Succinic Acid - metabolism ; Sucrose - metabolism ; Sulfates ; Sulfur ; Sulfur Compounds - metabolism ; Sulfuric Acid Esters - metabolism ; Superoxide Dismutase - analysis ; Yeast ; Yeasts</subject><ispartof>Biometals, 2009-12, Vol.22 (6), p.1051-1061</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><rights>Springer Science+Business Media, LLC. 2009 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</citedby><cites>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-009-9256-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-009-9256-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19649569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pynyaha, Yuriy V</creatorcontrib><creatorcontrib>Boretsky, Yuriy R</creatorcontrib><creatorcontrib>Fedorovych, Daria V</creatorcontrib><creatorcontrib>Fayura, Lubov R</creatorcontrib><creatorcontrib>Levkiv, Andriy I</creatorcontrib><creatorcontrib>Ubiyvovk, Vira M</creatorcontrib><creatorcontrib>Protchenko, Olha V</creatorcontrib><creatorcontrib>Philpott, Caroline C</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbon sources</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Frataxin</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>Glycerol - metabolism</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypersensitivity</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Mitochondria - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Organisms, Genetically Modified - genetics</subject><subject>Organisms, Genetically Modified - metabolism</subject><subject>Oxygen uptake</subject><subject>Pharmacology/Toxicology</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia guilliermondii</subject><subject>Plant Physiology</subject><subject>Proteins</subject><subject>Riboflavin - biosynthesis</subject><subject>Riboflavin - genetics</subject><subject>Riboflavin - pharmacology</subject><subject>Succinic Acid - metabolism</subject><subject>Sucrose - metabolism</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Sulfur Compounds - metabolism</subject><subject>Sulfuric Acid Esters - metabolism</subject><subject>Superoxide Dismutase - analysis</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUsFu1DAQjRCILoUP4AIWB26BsR07yQWpKpQiVQIJeuBkOY6dnSqJWzupdj-LP8RpVhQ4wGmseW_ejGdelj2n8IYClG8jBcGLHKDOayZkvnuQbagoWV6VJX-YbaCWMoeqKI6yJzFeQSKWIB9nR7SWRS1kvcl-vLcODdrR7AmOxAU96V16bP3ge9_Nlnw_O6cLNG0t2VsdJ_IFzRY16Wbse7Rh8GOLSHqr20gmTwaMMdhu7vWEfiTeEQwpanMzY8S7nB5bErDxrte3SbpBH_djahAx3mHaOWumSOLcOz1ZomPEAVfBp9kjp_tonx3icXZ59uHb6Xl-8fnjp9OTi9wIUUx5VZSsEbIUknJjQQK1pgAH1jnJndZQgWgsa6qyKlOWaiF5C9LItmLaVYIfZ-9W3eu5GWxr7DgF3avrgIMOe-U1qj-REbeq87eKF6wCViaB1weB4G9mGyeVNmNs3-vR-jkqLrkUspD_JTLK6qKGRfHVX8QrP4cxbUExxoVMl2aJRFeSCX45hPs1MgW12EattlHJDWqxjdqlmhe___W-4uCTRGArISZo7Gy47_wv1ZdrkdNe6S5gVJdfGVAOtAReSMZ_Aq5n3LU</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Pynyaha, Yuriy V</creator><creator>Boretsky, Yuriy R</creator><creator>Fedorovych, Daria V</creator><creator>Fayura, Lubov R</creator><creator>Levkiv, Andriy I</creator><creator>Ubiyvovk, Vira M</creator><creator>Protchenko, Olha V</creator><creator>Philpott, Caroline C</creator><creator>Sibirny, Andriy A</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><author>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbon sources</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Frataxin</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>Glycerol - metabolism</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypersensitivity</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Mitochondria - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Organisms, Genetically Modified - genetics</topic><topic>Organisms, Genetically Modified - metabolism</topic><topic>Oxygen uptake</topic><topic>Pharmacology/Toxicology</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia guilliermondii</topic><topic>Plant Physiology</topic><topic>Proteins</topic><topic>Riboflavin - biosynthesis</topic><topic>Riboflavin - genetics</topic><topic>Riboflavin - pharmacology</topic><topic>Succinic Acid - metabolism</topic><topic>Sucrose - metabolism</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Sulfur Compounds - metabolism</topic><topic>Sulfuric Acid Esters - metabolism</topic><topic>Superoxide Dismutase - analysis</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pynyaha, Yuriy V</creatorcontrib><creatorcontrib>Boretsky, Yuriy R</creatorcontrib><creatorcontrib>Fedorovych, Daria V</creatorcontrib><creatorcontrib>Fayura, Lubov R</creatorcontrib><creatorcontrib>Levkiv, Andriy I</creatorcontrib><creatorcontrib>Ubiyvovk, Vira M</creatorcontrib><creatorcontrib>Protchenko, Olha V</creatorcontrib><creatorcontrib>Philpott, Caroline C</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pynyaha, Yuriy V</au><au>Boretsky, Yuriy R</au><au>Fedorovych, Daria V</au><au>Fayura, Lubov R</au><au>Levkiv, Andriy I</au><au>Ubiyvovk, Vira M</au><au>Protchenko, Olha V</au><au>Philpott, Caroline C</au><au>Sibirny, Andriy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>22</volume><issue>6</issue><spage>1051</spage><epage>1061</epage><pages>1051-1061</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>19649569</pmid><doi>10.1007/s10534-009-9256-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2009-12, Vol.22 (6), p.1051-1061 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428027 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Biosynthesis Carbon sources Cell Biology Cellular biology Frataxin Fungal Proteins - genetics Fungal Proteins - metabolism Gene Deletion Glycerol - metabolism Hydrogen peroxide Hydrogen Peroxide - pharmacology Hypersensitivity Ion Transport - drug effects Ion Transport - genetics Iron Iron - metabolism Iron-Binding Proteins - genetics Iron-Binding Proteins - metabolism Life Sciences Medicine/Public Health Metabolism Microbiology Mitochondria - metabolism Mutants Mutation Organisms, Genetically Modified - genetics Organisms, Genetically Modified - metabolism Oxygen uptake Pharmacology/Toxicology Pichia - genetics Pichia - metabolism Pichia guilliermondii Plant Physiology Proteins Riboflavin - biosynthesis Riboflavin - genetics Riboflavin - pharmacology Succinic Acid - metabolism Sucrose - metabolism Sulfates Sulfur Sulfur Compounds - metabolism Sulfuric Acid Esters - metabolism Superoxide Dismutase - analysis Yeast Yeasts |
title | Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deficiency%20in%20frataxin%20homologue%20YFH1%20in%20the%20yeast%20Pichia%20guilliermondii%20leads%20to%20missregulation%20of%20iron%20acquisition%20and%20riboflavin%20biosynthesis%20and%20affects%20sulfate%20assimilation&rft.jtitle=Biometals&rft.au=Pynyaha,%20Yuriy%20V&rft.date=2009-12-01&rft.volume=22&rft.issue=6&rft.spage=1051&rft.epage=1061&rft.pages=1051-1061&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-009-9256-x&rft_dat=%3Cproquest_pubme%3E1900351521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223568442&rft_id=info:pmid/19649569&rfr_iscdi=true |