Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation

Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2009-12, Vol.22 (6), p.1051-1061
Hauptverfasser: Pynyaha, Yuriy V, Boretsky, Yuriy R, Fedorovych, Daria V, Fayura, Lubov R, Levkiv, Andriy I, Ubiyvovk, Vira M, Protchenko, Olha V, Philpott, Caroline C, Sibirny, Andriy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1061
container_issue 6
container_start_page 1051
container_title Biometals
container_volume 22
creator Pynyaha, Yuriy V
Boretsky, Yuriy R
Fedorovych, Daria V
Fayura, Lubov R
Levkiv, Andriy I
Ubiyvovk, Vira M
Protchenko, Olha V
Philpott, Caroline C
Sibirny, Andriy A
description Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.
doi_str_mv 10.1007/s10534-009-9256-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900351521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</originalsourceid><addsrcrecordid>eNqFUsFu1DAQjRCILoUP4AIWB26BsR07yQWpKpQiVQIJeuBkOY6dnSqJWzupdj-LP8RpVhQ4wGmseW_ejGdelj2n8IYClG8jBcGLHKDOayZkvnuQbagoWV6VJX-YbaCWMoeqKI6yJzFeQSKWIB9nR7SWRS1kvcl-vLcODdrR7AmOxAU96V16bP3ge9_Nlnw_O6cLNG0t2VsdJ_IFzRY16Wbse7Rh8GOLSHqr20gmTwaMMdhu7vWEfiTeEQwpanMzY8S7nB5bErDxrte3SbpBH_djahAx3mHaOWumSOLcOz1ZomPEAVfBp9kjp_tonx3icXZ59uHb6Xl-8fnjp9OTi9wIUUx5VZSsEbIUknJjQQK1pgAH1jnJndZQgWgsa6qyKlOWaiF5C9LItmLaVYIfZ-9W3eu5GWxr7DgF3avrgIMOe-U1qj-REbeq87eKF6wCViaB1weB4G9mGyeVNmNs3-vR-jkqLrkUspD_JTLK6qKGRfHVX8QrP4cxbUExxoVMl2aJRFeSCX45hPs1MgW12EattlHJDWqxjdqlmhe___W-4uCTRGArISZo7Gy47_wv1ZdrkdNe6S5gVJdfGVAOtAReSMZ_Aq5n3LU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223568442</pqid></control><display><type>article</type><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</creator><creatorcontrib>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</creatorcontrib><description>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-009-9256-x</identifier><identifier>PMID: 19649569</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Carbon sources ; Cell Biology ; Cellular biology ; Frataxin ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; Glycerol - metabolism ; Hydrogen peroxide ; Hydrogen Peroxide - pharmacology ; Hypersensitivity ; Ion Transport - drug effects ; Ion Transport - genetics ; Iron ; Iron - metabolism ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Life Sciences ; Medicine/Public Health ; Metabolism ; Microbiology ; Mitochondria - metabolism ; Mutants ; Mutation ; Organisms, Genetically Modified - genetics ; Organisms, Genetically Modified - metabolism ; Oxygen uptake ; Pharmacology/Toxicology ; Pichia - genetics ; Pichia - metabolism ; Pichia guilliermondii ; Plant Physiology ; Proteins ; Riboflavin - biosynthesis ; Riboflavin - genetics ; Riboflavin - pharmacology ; Succinic Acid - metabolism ; Sucrose - metabolism ; Sulfates ; Sulfur ; Sulfur Compounds - metabolism ; Sulfuric Acid Esters - metabolism ; Superoxide Dismutase - analysis ; Yeast ; Yeasts</subject><ispartof>Biometals, 2009-12, Vol.22 (6), p.1051-1061</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><rights>Springer Science+Business Media, LLC. 2009 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</citedby><cites>FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-009-9256-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-009-9256-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19649569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pynyaha, Yuriy V</creatorcontrib><creatorcontrib>Boretsky, Yuriy R</creatorcontrib><creatorcontrib>Fedorovych, Daria V</creatorcontrib><creatorcontrib>Fayura, Lubov R</creatorcontrib><creatorcontrib>Levkiv, Andriy I</creatorcontrib><creatorcontrib>Ubiyvovk, Vira M</creatorcontrib><creatorcontrib>Protchenko, Olha V</creatorcontrib><creatorcontrib>Philpott, Caroline C</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbon sources</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Frataxin</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>Glycerol - metabolism</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypersensitivity</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Mitochondria - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Organisms, Genetically Modified - genetics</subject><subject>Organisms, Genetically Modified - metabolism</subject><subject>Oxygen uptake</subject><subject>Pharmacology/Toxicology</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia guilliermondii</subject><subject>Plant Physiology</subject><subject>Proteins</subject><subject>Riboflavin - biosynthesis</subject><subject>Riboflavin - genetics</subject><subject>Riboflavin - pharmacology</subject><subject>Succinic Acid - metabolism</subject><subject>Sucrose - metabolism</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Sulfur Compounds - metabolism</subject><subject>Sulfuric Acid Esters - metabolism</subject><subject>Superoxide Dismutase - analysis</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUsFu1DAQjRCILoUP4AIWB26BsR07yQWpKpQiVQIJeuBkOY6dnSqJWzupdj-LP8RpVhQ4wGmseW_ejGdelj2n8IYClG8jBcGLHKDOayZkvnuQbagoWV6VJX-YbaCWMoeqKI6yJzFeQSKWIB9nR7SWRS1kvcl-vLcODdrR7AmOxAU96V16bP3ge9_Nlnw_O6cLNG0t2VsdJ_IFzRY16Wbse7Rh8GOLSHqr20gmTwaMMdhu7vWEfiTeEQwpanMzY8S7nB5bErDxrte3SbpBH_djahAx3mHaOWumSOLcOz1ZomPEAVfBp9kjp_tonx3icXZ59uHb6Xl-8fnjp9OTi9wIUUx5VZSsEbIUknJjQQK1pgAH1jnJndZQgWgsa6qyKlOWaiF5C9LItmLaVYIfZ-9W3eu5GWxr7DgF3avrgIMOe-U1qj-REbeq87eKF6wCViaB1weB4G9mGyeVNmNs3-vR-jkqLrkUspD_JTLK6qKGRfHVX8QrP4cxbUExxoVMl2aJRFeSCX45hPs1MgW12EattlHJDWqxjdqlmhe___W-4uCTRGArISZo7Gy47_wv1ZdrkdNe6S5gVJdfGVAOtAReSMZ_Aq5n3LU</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Pynyaha, Yuriy V</creator><creator>Boretsky, Yuriy R</creator><creator>Fedorovych, Daria V</creator><creator>Fayura, Lubov R</creator><creator>Levkiv, Andriy I</creator><creator>Ubiyvovk, Vira M</creator><creator>Protchenko, Olha V</creator><creator>Philpott, Caroline C</creator><creator>Sibirny, Andriy A</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</title><author>Pynyaha, Yuriy V ; Boretsky, Yuriy R ; Fedorovych, Daria V ; Fayura, Lubov R ; Levkiv, Andriy I ; Ubiyvovk, Vira M ; Protchenko, Olha V ; Philpott, Caroline C ; Sibirny, Andriy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-8472b5675613ce0601ec40f0eff63faa0805be2b8787f0e1a563d06c6d82af853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbon sources</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Frataxin</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>Glycerol - metabolism</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypersensitivity</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Mitochondria - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Organisms, Genetically Modified - genetics</topic><topic>Organisms, Genetically Modified - metabolism</topic><topic>Oxygen uptake</topic><topic>Pharmacology/Toxicology</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia guilliermondii</topic><topic>Plant Physiology</topic><topic>Proteins</topic><topic>Riboflavin - biosynthesis</topic><topic>Riboflavin - genetics</topic><topic>Riboflavin - pharmacology</topic><topic>Succinic Acid - metabolism</topic><topic>Sucrose - metabolism</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Sulfur Compounds - metabolism</topic><topic>Sulfuric Acid Esters - metabolism</topic><topic>Superoxide Dismutase - analysis</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pynyaha, Yuriy V</creatorcontrib><creatorcontrib>Boretsky, Yuriy R</creatorcontrib><creatorcontrib>Fedorovych, Daria V</creatorcontrib><creatorcontrib>Fayura, Lubov R</creatorcontrib><creatorcontrib>Levkiv, Andriy I</creatorcontrib><creatorcontrib>Ubiyvovk, Vira M</creatorcontrib><creatorcontrib>Protchenko, Olha V</creatorcontrib><creatorcontrib>Philpott, Caroline C</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pynyaha, Yuriy V</au><au>Boretsky, Yuriy R</au><au>Fedorovych, Daria V</au><au>Fayura, Lubov R</au><au>Levkiv, Andriy I</au><au>Ubiyvovk, Vira M</au><au>Protchenko, Olha V</au><au>Philpott, Caroline C</au><au>Sibirny, Andriy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>22</volume><issue>6</issue><spage>1051</spage><epage>1061</epage><pages>1051-1061</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B₂) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>19649569</pmid><doi>10.1007/s10534-009-9256-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-0844
ispartof Biometals, 2009-12, Vol.22 (6), p.1051-1061
issn 0966-0844
1572-8773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3428027
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biomedical and Life Sciences
Biosynthesis
Carbon sources
Cell Biology
Cellular biology
Frataxin
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Deletion
Glycerol - metabolism
Hydrogen peroxide
Hydrogen Peroxide - pharmacology
Hypersensitivity
Ion Transport - drug effects
Ion Transport - genetics
Iron
Iron - metabolism
Iron-Binding Proteins - genetics
Iron-Binding Proteins - metabolism
Life Sciences
Medicine/Public Health
Metabolism
Microbiology
Mitochondria - metabolism
Mutants
Mutation
Organisms, Genetically Modified - genetics
Organisms, Genetically Modified - metabolism
Oxygen uptake
Pharmacology/Toxicology
Pichia - genetics
Pichia - metabolism
Pichia guilliermondii
Plant Physiology
Proteins
Riboflavin - biosynthesis
Riboflavin - genetics
Riboflavin - pharmacology
Succinic Acid - metabolism
Sucrose - metabolism
Sulfates
Sulfur
Sulfur Compounds - metabolism
Sulfuric Acid Esters - metabolism
Superoxide Dismutase - analysis
Yeast
Yeasts
title Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deficiency%20in%20frataxin%20homologue%20YFH1%20in%20the%20yeast%20Pichia%20guilliermondii%20leads%20to%20missregulation%20of%20iron%20acquisition%20and%20riboflavin%20biosynthesis%20and%20affects%20sulfate%20assimilation&rft.jtitle=Biometals&rft.au=Pynyaha,%20Yuriy%20V&rft.date=2009-12-01&rft.volume=22&rft.issue=6&rft.spage=1051&rft.epage=1061&rft.pages=1051-1061&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-009-9256-x&rft_dat=%3Cproquest_pubme%3E1900351521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223568442&rft_id=info:pmid/19649569&rfr_iscdi=true