Chaperonin Function: Folding by Forced Unfolding

The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1999-04, Vol.284 (5415), p.822-825
Hauptverfasser: Shtilerman, Mark, Lorimer, George H., Englander, S. Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 5415
container_start_page 822
container_title Science (American Association for the Advancement of Science)
container_volume 284
creator Shtilerman, Mark
Lorimer, George H.
Englander, S. Walter
description The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.
doi_str_mv 10.1126/science.284.5415.822
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3427652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A54635825</galeid><jstor_id>2898324</jstor_id><sourcerecordid>A54635825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c825t-b78beff39083586387b3299b8b083bf935deb3fb42fa3d00b364fbadf04569673</originalsourceid><addsrcrecordid>eNqN0k1r2zAYB3AxNtYs2zcoI4cxdqgzvdrSDoM2LFkhLIetuwpJllwVR0otZ7TffgoOXQOBBR9snuenR0j-A3CO4BQhXH5Oxttg7BRzOmUUsSnH-AUYIShYITAkL8EIQlIWHFbsDLxJ6Q7C3BPkNThDEGMkEB8BOLtVG9vF4MNkvg2m9zF8mcxjW_vQTPRj_uyMrSc3wQ21t-CVU22y7_bvMbiZf_s1-14sV4vr2eWyMByzvtAV19Y5IiAnjJeEV5pgITTXuaCdIKy2mjhNsVOkhlCTkjqtagcpK0VZkTH4OszdbPXa1saGvlOt3HR-rbpHGZWXh53gb2UT_0hCcVUynAd83A_o4v3Wpl6ufTK2bVWwcZtkKSqMqKD_hajKl8UQyvBigI1qrfT5RvLGprHB5v1jsM7n8iWjZT4xZpkXR3h-arv25pj_dOAz6e1D36htSvL654-T6er3yfRqcSrli-UBvThGTWxb21iZkzBbHXA6cNPFlDrrnv4jgnKXZrlPs8xplrs0y5zmvOz98ww8WzTEN4MPe6CSUa3rVDA-_XMVL3eJH4Pzgd2lPnZPbcwFJ5iSv_tFA0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17221511</pqid></control><display><type>article</type><title>Chaperonin Function: Folding by Forced Unfolding</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Shtilerman, Mark ; Lorimer, George H. ; Englander, S. Walter</creator><creatorcontrib>Shtilerman, Mark ; Lorimer, George H. ; Englander, S. Walter</creatorcontrib><description>The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.284.5415.822</identifier><identifier>PMID: 10221918</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Adenosine Triphosphate - metabolism ; Adenylyl Imidodiphosphate - metabolism ; Amides ; Analytical, structural and metabolic biochemistry ; Binding and carrier proteins ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Chaperonin 10 - chemistry ; Chaperonin 10 - metabolism ; Chaperonin 10 - physiology ; Chaperonin 60 - chemistry ; Chaperonin 60 - metabolism ; Chaperonin 60 - physiology ; Chaperonins ; Denaturation ; Fundamental and applied biological sciences. Psychology ; Hydrogen ; Hydrogen - chemistry ; Hydrogen - metabolism ; Hydrolysis ; Models, Molecular ; Molecules ; Protein Binding ; Protein Conformation ; Protein denaturation ; Protein Folding ; Protein Structure, Secondary ; Protein unfolding ; Proteins ; Rhodosphirillium rubrum ; Ribulose-Bisphosphate Carboxylase - chemistry ; Ribulose-Bisphosphate Carboxylase - metabolism ; Tritium</subject><ispartof>Science (American Association for the Advancement of Science), 1999-04, Vol.284 (5415), p.822-825</ispartof><rights>Copyright 1999 American Association for the Advancement of Science</rights><rights>1999 INIST-CNRS</rights><rights>COPYRIGHT 1999 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1999 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c825t-b78beff39083586387b3299b8b083bf935deb3fb42fa3d00b364fbadf04569673</citedby><cites>FETCH-LOGICAL-c825t-b78beff39083586387b3299b8b083bf935deb3fb42fa3d00b364fbadf04569673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2898324$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2898324$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1786959$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10221918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shtilerman, Mark</creatorcontrib><creatorcontrib>Lorimer, George H.</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><title>Chaperonin Function: Folding by Forced Unfolding</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Amides</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Binding and carrier proteins</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Chaperonin 10 - chemistry</subject><subject>Chaperonin 10 - metabolism</subject><subject>Chaperonin 10 - physiology</subject><subject>Chaperonin 60 - chemistry</subject><subject>Chaperonin 60 - metabolism</subject><subject>Chaperonin 60 - physiology</subject><subject>Chaperonins</subject><subject>Denaturation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein denaturation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein unfolding</subject><subject>Proteins</subject><subject>Rhodosphirillium rubrum</subject><subject>Ribulose-Bisphosphate Carboxylase - chemistry</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>Tritium</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0k1r2zAYB3AxNtYs2zcoI4cxdqgzvdrSDoM2LFkhLIetuwpJllwVR0otZ7TffgoOXQOBBR9snuenR0j-A3CO4BQhXH5Oxttg7BRzOmUUsSnH-AUYIShYITAkL8EIQlIWHFbsDLxJ6Q7C3BPkNThDEGMkEB8BOLtVG9vF4MNkvg2m9zF8mcxjW_vQTPRj_uyMrSc3wQ21t-CVU22y7_bvMbiZf_s1-14sV4vr2eWyMByzvtAV19Y5IiAnjJeEV5pgITTXuaCdIKy2mjhNsVOkhlCTkjqtagcpK0VZkTH4OszdbPXa1saGvlOt3HR-rbpHGZWXh53gb2UT_0hCcVUynAd83A_o4v3Wpl6ufTK2bVWwcZtkKSqMqKD_hajKl8UQyvBigI1qrfT5RvLGprHB5v1jsM7n8iWjZT4xZpkXR3h-arv25pj_dOAz6e1D36htSvL654-T6er3yfRqcSrli-UBvThGTWxb21iZkzBbHXA6cNPFlDrrnv4jgnKXZrlPs8xplrs0y5zmvOz98ww8WzTEN4MPe6CSUa3rVDA-_XMVL3eJH4Pzgd2lPnZPbcwFJ5iSv_tFA0I</recordid><startdate>19990430</startdate><enddate>19990430</enddate><creator>Shtilerman, Mark</creator><creator>Lorimer, George H.</creator><creator>Englander, S. Walter</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990430</creationdate><title>Chaperonin Function: Folding by Forced Unfolding</title><author>Shtilerman, Mark ; Lorimer, George H. ; Englander, S. Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c825t-b78beff39083586387b3299b8b083bf935deb3fb42fa3d00b364fbadf04569673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Amides</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Binding and carrier proteins</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Chaperonin 10 - chemistry</topic><topic>Chaperonin 10 - metabolism</topic><topic>Chaperonin 10 - physiology</topic><topic>Chaperonin 60 - chemistry</topic><topic>Chaperonin 60 - metabolism</topic><topic>Chaperonin 60 - physiology</topic><topic>Chaperonins</topic><topic>Denaturation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein denaturation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein unfolding</topic><topic>Proteins</topic><topic>Rhodosphirillium rubrum</topic><topic>Ribulose-Bisphosphate Carboxylase - chemistry</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shtilerman, Mark</creatorcontrib><creatorcontrib>Lorimer, George H.</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shtilerman, Mark</au><au>Lorimer, George H.</au><au>Englander, S. Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaperonin Function: Folding by Forced Unfolding</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1999-04-30</date><risdate>1999</risdate><volume>284</volume><issue>5415</issue><spage>822</spage><epage>825</epage><pages>822-825</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>10221918</pmid><doi>10.1126/science.284.5415.822</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1999-04, Vol.284 (5415), p.822-825
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3427652
source MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Adenosine Triphosphate - metabolism
Adenylyl Imidodiphosphate - metabolism
Amides
Analytical, structural and metabolic biochemistry
Binding and carrier proteins
Binding Sites
Biochemistry
Biological and medical sciences
Chaperonin 10 - chemistry
Chaperonin 10 - metabolism
Chaperonin 10 - physiology
Chaperonin 60 - chemistry
Chaperonin 60 - metabolism
Chaperonin 60 - physiology
Chaperonins
Denaturation
Fundamental and applied biological sciences. Psychology
Hydrogen
Hydrogen - chemistry
Hydrogen - metabolism
Hydrolysis
Models, Molecular
Molecules
Protein Binding
Protein Conformation
Protein denaturation
Protein Folding
Protein Structure, Secondary
Protein unfolding
Proteins
Rhodosphirillium rubrum
Ribulose-Bisphosphate Carboxylase - chemistry
Ribulose-Bisphosphate Carboxylase - metabolism
Tritium
title Chaperonin Function: Folding by Forced Unfolding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaperonin%20Function:%20Folding%20by%20Forced%20Unfolding&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shtilerman,%20Mark&rft.date=1999-04-30&rft.volume=284&rft.issue=5415&rft.spage=822&rft.epage=825&rft.pages=822-825&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.284.5415.822&rft_dat=%3Cgale_pubme%3EA54635825%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17221511&rft_id=info:pmid/10221918&rft_galeid=A54635825&rft_jstor_id=2898324&rfr_iscdi=true