Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants

There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glycobiology (Oxford) 2012-04, Vol.22 (4), p.492-503
Hauptverfasser: He, Xu, Galpin, Jason D, Tropak, Michael B, Mahuran, Don, Haselhorst, Thomas, von Itzstein, Mark, Kolarich, Daniel, Packer, Nicolle H, Miao, Yansong, Jiang, Liwen, Grabowski, Gregory A, Clarke, Lorne A, Kermode, Allison R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue 4
container_start_page 492
container_title Glycobiology (Oxford)
container_volume 22
creator He, Xu
Galpin, Jason D
Tropak, Michael B
Mahuran, Don
Haselhorst, Thomas
von Itzstein, Mark
Kolarich, Daniel
Packer, Nicolle H
Miao, Yansong
Jiang, Liwen
Grabowski, Gregory A
Clarke, Lorne A
Kermode, Allison R
description There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.
doi_str_mv 10.1093/glycob/cwr157
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3425599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924963234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b161a1cdcd77fb64ab6ed110865f9c80501071faa2327b50e764cbed879d1f4b3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhyBX5BhxCbcd24gtSVfElVYIDnK2xPdk1cuJgJ6X978lqSwWnGWl-evNmHiEvOXvHmWkv9unOZ3fhfxeuukdkx6VmjZCifUx2zCjTaK36M_Ks1p-Mcc179ZScCcE0N8bsyPKt5LD6JeaJ5oHC1t0gPawjTHSfVp89FnQl1xigIo0TrYihHtnLAi6GPNdY6XKAFGEC6vM4J7xtjrZgagIO0UecFvrG79NbOieYlvqcPBkgVXxxX8_Jj48fvl99bq6_fvpydXndeKnE0rjNLnAffOi6wWkJTmPgnPVaDcb3TDHOOj4AiFZ0TjHstPQOQ9-ZwAfp2nPy_qQ7r27E4DcfBZKdSxyh3NkM0f4_meLB7vONbaVQyphN4PW9QMm_VqyLHWP1mLYrMK_VGiGNbkUrN7I5kX77VS04PGzhzB6Dsqeg7CmojX_1r7UH-m8y7R_Mt5UM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924963234</pqid></control><display><type>article</type><title>Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>He, Xu ; Galpin, Jason D ; Tropak, Michael B ; Mahuran, Don ; Haselhorst, Thomas ; von Itzstein, Mark ; Kolarich, Daniel ; Packer, Nicolle H ; Miao, Yansong ; Jiang, Liwen ; Grabowski, Gregory A ; Clarke, Lorne A ; Kermode, Allison R</creator><creatorcontrib>He, Xu ; Galpin, Jason D ; Tropak, Michael B ; Mahuran, Don ; Haselhorst, Thomas ; von Itzstein, Mark ; Kolarich, Daniel ; Packer, Nicolle H ; Miao, Yansong ; Jiang, Liwen ; Grabowski, Gregory A ; Clarke, Lorne A ; Kermode, Allison R</creatorcontrib><description>There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.</description><identifier>ISSN: 0959-6658</identifier><identifier>EISSN: 1460-2423</identifier><identifier>DOI: 10.1093/glycob/cwr157</identifier><identifier>PMID: 22061999</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Arabidopsis - cytology ; Arabidopsis - genetics ; Carbohydrate Conformation ; Carbohydrate Sequence ; Cells, Cultured ; Enzyme Stability ; Glucosylceramidase - biosynthesis ; Glucosylceramidase - isolation &amp; purification ; Glucosylceramidase - metabolism ; Glycosylation ; Humans ; Kinetics ; Macrophages - metabolism ; Mannose ; Mice ; Molecular Sequence Data ; Plants, Genetically Modified ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Seeds - cytology ; Seeds - genetics</subject><ispartof>Glycobiology (Oxford), 2012-04, Vol.22 (4), p.492-503</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b161a1cdcd77fb64ab6ed110865f9c80501071faa2327b50e764cbed879d1f4b3</citedby><cites>FETCH-LOGICAL-c452t-b161a1cdcd77fb64ab6ed110865f9c80501071faa2327b50e764cbed879d1f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22061999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xu</creatorcontrib><creatorcontrib>Galpin, Jason D</creatorcontrib><creatorcontrib>Tropak, Michael B</creatorcontrib><creatorcontrib>Mahuran, Don</creatorcontrib><creatorcontrib>Haselhorst, Thomas</creatorcontrib><creatorcontrib>von Itzstein, Mark</creatorcontrib><creatorcontrib>Kolarich, Daniel</creatorcontrib><creatorcontrib>Packer, Nicolle H</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Jiang, Liwen</creatorcontrib><creatorcontrib>Grabowski, Gregory A</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><title>Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants</title><title>Glycobiology (Oxford)</title><addtitle>Glycobiology</addtitle><description>There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.</description><subject>Animals</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Cells, Cultured</subject><subject>Enzyme Stability</subject><subject>Glucosylceramidase - biosynthesis</subject><subject>Glucosylceramidase - isolation &amp; purification</subject><subject>Glucosylceramidase - metabolism</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Macrophages - metabolism</subject><subject>Mannose</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Plants, Genetically Modified</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Seeds - cytology</subject><subject>Seeds - genetics</subject><issn>0959-6658</issn><issn>1460-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhyBX5BhxCbcd24gtSVfElVYIDnK2xPdk1cuJgJ6X978lqSwWnGWl-evNmHiEvOXvHmWkv9unOZ3fhfxeuukdkx6VmjZCifUx2zCjTaK36M_Ks1p-Mcc179ZScCcE0N8bsyPKt5LD6JeaJ5oHC1t0gPawjTHSfVp89FnQl1xigIo0TrYihHtnLAi6GPNdY6XKAFGEC6vM4J7xtjrZgagIO0UecFvrG79NbOieYlvqcPBkgVXxxX8_Jj48fvl99bq6_fvpydXndeKnE0rjNLnAffOi6wWkJTmPgnPVaDcb3TDHOOj4AiFZ0TjHstPQOQ9-ZwAfp2nPy_qQ7r27E4DcfBZKdSxyh3NkM0f4_meLB7vONbaVQyphN4PW9QMm_VqyLHWP1mLYrMK_VGiGNbkUrN7I5kX77VS04PGzhzB6Dsqeg7CmojX_1r7UH-m8y7R_Mt5UM</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>He, Xu</creator><creator>Galpin, Jason D</creator><creator>Tropak, Michael B</creator><creator>Mahuran, Don</creator><creator>Haselhorst, Thomas</creator><creator>von Itzstein, Mark</creator><creator>Kolarich, Daniel</creator><creator>Packer, Nicolle H</creator><creator>Miao, Yansong</creator><creator>Jiang, Liwen</creator><creator>Grabowski, Gregory A</creator><creator>Clarke, Lorne A</creator><creator>Kermode, Allison R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants</title><author>He, Xu ; Galpin, Jason D ; Tropak, Michael B ; Mahuran, Don ; Haselhorst, Thomas ; von Itzstein, Mark ; Kolarich, Daniel ; Packer, Nicolle H ; Miao, Yansong ; Jiang, Liwen ; Grabowski, Gregory A ; Clarke, Lorne A ; Kermode, Allison R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b161a1cdcd77fb64ab6ed110865f9c80501071faa2327b50e764cbed879d1f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Cells, Cultured</topic><topic>Enzyme Stability</topic><topic>Glucosylceramidase - biosynthesis</topic><topic>Glucosylceramidase - isolation &amp; purification</topic><topic>Glucosylceramidase - metabolism</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Macrophages - metabolism</topic><topic>Mannose</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Plants, Genetically Modified</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Seeds - cytology</topic><topic>Seeds - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xu</creatorcontrib><creatorcontrib>Galpin, Jason D</creatorcontrib><creatorcontrib>Tropak, Michael B</creatorcontrib><creatorcontrib>Mahuran, Don</creatorcontrib><creatorcontrib>Haselhorst, Thomas</creatorcontrib><creatorcontrib>von Itzstein, Mark</creatorcontrib><creatorcontrib>Kolarich, Daniel</creatorcontrib><creatorcontrib>Packer, Nicolle H</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Jiang, Liwen</creatorcontrib><creatorcontrib>Grabowski, Gregory A</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glycobiology (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xu</au><au>Galpin, Jason D</au><au>Tropak, Michael B</au><au>Mahuran, Don</au><au>Haselhorst, Thomas</au><au>von Itzstein, Mark</au><au>Kolarich, Daniel</au><au>Packer, Nicolle H</au><au>Miao, Yansong</au><au>Jiang, Liwen</au><au>Grabowski, Gregory A</au><au>Clarke, Lorne A</au><au>Kermode, Allison R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants</atitle><jtitle>Glycobiology (Oxford)</jtitle><addtitle>Glycobiology</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>492</spage><epage>503</epage><pages>492-503</pages><issn>0959-6658</issn><eissn>1460-2423</eissn><abstract>There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.</abstract><cop>England</cop><pmid>22061999</pmid><doi>10.1093/glycob/cwr157</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-6658
ispartof Glycobiology (Oxford), 2012-04, Vol.22 (4), p.492-503
issn 0959-6658
1460-2423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3425599
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Arabidopsis - cytology
Arabidopsis - genetics
Carbohydrate Conformation
Carbohydrate Sequence
Cells, Cultured
Enzyme Stability
Glucosylceramidase - biosynthesis
Glucosylceramidase - isolation & purification
Glucosylceramidase - metabolism
Glycosylation
Humans
Kinetics
Macrophages - metabolism
Mannose
Mice
Molecular Sequence Data
Plants, Genetically Modified
Recombinant Proteins - biosynthesis
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Seeds - cytology
Seeds - genetics
title Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20active%20human%20glucocerebrosidase%20in%20seeds%20of%20Arabidopsis%20thaliana%20complex-glycan-deficient%20(cgl)%20plants&rft.jtitle=Glycobiology%20(Oxford)&rft.au=He,%20Xu&rft.date=2012-04-01&rft.volume=22&rft.issue=4&rft.spage=492&rft.epage=503&rft.pages=492-503&rft.issn=0959-6658&rft.eissn=1460-2423&rft_id=info:doi/10.1093/glycob/cwr157&rft_dat=%3Cproquest_pubme%3E924963234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924963234&rft_id=info:pmid/22061999&rfr_iscdi=true