Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells
Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2012-09, Vol.153 (9), p.4491-4501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4501 |
---|---|
container_issue | 9 |
container_start_page | 4491 |
container_title | Endocrinology (Philadelphia) |
container_volume | 153 |
creator | Schreiber, Nicole B Spicer, Leon J |
description | Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle. |
doi_str_mv | 10.1210/en.2012-1003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3423607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2012-1003</oup_id><sourcerecordid>1035106746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-8de3b01dd7578605b400224d6135a3a5c1364cee2e68bbac9b41bf1ccbbf70fc3</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7Fq981oCIlZw6snn7NwIddkZhaLgx3VIMpk2ZTZZk5mqf8Dfbaa7tiqKFyFfT95zTs5bFA8xHGOC4YX1xwQwKTEAvVUscM14WeEKbhcLAEzLipDqoLiX0kXeMsbo3eIgH9VLymFRfF_3vTVjQqFHjdMx6EGlEbUxfBnPUaPMGCKq0VHTNvUzFDz6MNoYXBfOrLfJJaR8h9q8Ruuv22hTcpmZz1bBjzEMV7r5Ldq8f3uCnEevwqXLdBuVn4aQFFrZYUj3izu9GpJ9sJ8Pi0_N-uPqdXn6rn2zOjktDed4LJedpRpw11W8WgrgmgEQwjqBKVdUcYOpYMZaYsVSa2VqzbDusTFa9xX0hh4WL3e620lvbGdsTlINchvdRsVvMignf7_x7lyehUtJGaECqixwtBeI4fNk0yg3LplcgvI2TEliIYBh4Dmj_6JAOQZRMZHRx3-gF2GKPv-EpJiCIHnM1PMdZWJIKdr-Om8McvaCtF7OXpCzFzL-6Ndar-Gfzc_Akz2gklFDn1tiXLrhBFlyLmahpzsuTNt_hSz3IemOtL4LJuZGX3nippq_JvoDI2fX5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130623066</pqid></control><display><type>article</type><title>Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells</title><source>MEDLINE</source><source>Oxford University Press Journals Current</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Schreiber, Nicole B ; Spicer, Leon J</creator><creatorcontrib>Schreiber, Nicole B ; Spicer, Leon J</creatorcontrib><description><![CDATA[Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.]]></description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2012-1003</identifier><identifier>PMID: 22798350</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Abundance ; Animals ; Autocrine signalling ; Biological and medical sciences ; Cattle ; Cell proliferation ; Cholesterol Side-Chain Cleavage Enzyme - genetics ; Cyclic AMP ; Dihydrotestosterone - analogs & derivatives ; Dihydrotestosterone - pharmacology ; Female ; Fetal calf serum ; Fibroblast growth factor 9 ; Fibroblast Growth Factor 9 - genetics ; Fibroblast Growth Factor 9 - pharmacology ; Fibroblast growth factor receptor 9 ; Fibroblasts ; Follicle-stimulating hormone ; Follicles ; Forskolin ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gonadotropins ; Granulosa cells ; Granulosa Cells - drug effects ; Granulosa Cells - metabolism ; Growth factors ; Hormones ; Hydroxysteroids ; Insulin-like growth factor I ; Mouse mammary tumor virus ; Phosphoproteins - genetics ; Pituitary (anterior) ; Pregnenolone ; Pregnenolone - genetics ; Progesterone ; Receptor mechanisms ; Receptors, FSH - genetics ; Reproduction-Development ; Reproductive status ; Serum-free medium ; Sex hormones ; Steroidogenesis ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2012-09, Vol.153 (9), p.4491-4501</ispartof><rights>Copyright © 2012 by The Endocrine Society</rights><rights>Copyright © 2012 by The Endocrine Society 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-8de3b01dd7578605b400224d6135a3a5c1364cee2e68bbac9b41bf1ccbbf70fc3</citedby><cites>FETCH-LOGICAL-c551t-8de3b01dd7578605b400224d6135a3a5c1364cee2e68bbac9b41bf1ccbbf70fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26285563$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22798350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schreiber, Nicole B</creatorcontrib><creatorcontrib>Spicer, Leon J</creatorcontrib><title>Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description><![CDATA[Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.]]></description><subject>Abundance</subject><subject>Animals</subject><subject>Autocrine signalling</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Cell proliferation</subject><subject>Cholesterol Side-Chain Cleavage Enzyme - genetics</subject><subject>Cyclic AMP</subject><subject>Dihydrotestosterone - analogs & derivatives</subject><subject>Dihydrotestosterone - pharmacology</subject><subject>Female</subject><subject>Fetal calf serum</subject><subject>Fibroblast growth factor 9</subject><subject>Fibroblast Growth Factor 9 - genetics</subject><subject>Fibroblast Growth Factor 9 - pharmacology</subject><subject>Fibroblast growth factor receptor 9</subject><subject>Fibroblasts</subject><subject>Follicle-stimulating hormone</subject><subject>Follicles</subject><subject>Forskolin</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gonadotropins</subject><subject>Granulosa cells</subject><subject>Granulosa Cells - drug effects</subject><subject>Granulosa Cells - metabolism</subject><subject>Growth factors</subject><subject>Hormones</subject><subject>Hydroxysteroids</subject><subject>Insulin-like growth factor I</subject><subject>Mouse mammary tumor virus</subject><subject>Phosphoproteins - genetics</subject><subject>Pituitary (anterior)</subject><subject>Pregnenolone</subject><subject>Pregnenolone - genetics</subject><subject>Progesterone</subject><subject>Receptor mechanisms</subject><subject>Receptors, FSH - genetics</subject><subject>Reproduction-Development</subject><subject>Reproductive status</subject><subject>Serum-free medium</subject><subject>Sex hormones</subject><subject>Steroidogenesis</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1rFDEUhgdR7Fq981oCIlZw6snn7NwIddkZhaLgx3VIMpk2ZTZZk5mqf8Dfbaa7tiqKFyFfT95zTs5bFA8xHGOC4YX1xwQwKTEAvVUscM14WeEKbhcLAEzLipDqoLiX0kXeMsbo3eIgH9VLymFRfF_3vTVjQqFHjdMx6EGlEbUxfBnPUaPMGCKq0VHTNvUzFDz6MNoYXBfOrLfJJaR8h9q8Ruuv22hTcpmZz1bBjzEMV7r5Ldq8f3uCnEevwqXLdBuVn4aQFFrZYUj3izu9GpJ9sJ8Pi0_N-uPqdXn6rn2zOjktDed4LJedpRpw11W8WgrgmgEQwjqBKVdUcYOpYMZaYsVSa2VqzbDusTFa9xX0hh4WL3e620lvbGdsTlINchvdRsVvMignf7_x7lyehUtJGaECqixwtBeI4fNk0yg3LplcgvI2TEliIYBh4Dmj_6JAOQZRMZHRx3-gF2GKPv-EpJiCIHnM1PMdZWJIKdr-Om8McvaCtF7OXpCzFzL-6Ndar-Gfzc_Akz2gklFDn1tiXLrhBFlyLmahpzsuTNt_hSz3IemOtL4LJuZGX3nippq_JvoDI2fX5Q</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Schreiber, Nicole B</creator><creator>Spicer, Leon J</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120901</creationdate><title>Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells</title><author>Schreiber, Nicole B ; Spicer, Leon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-8de3b01dd7578605b400224d6135a3a5c1364cee2e68bbac9b41bf1ccbbf70fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abundance</topic><topic>Animals</topic><topic>Autocrine signalling</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Cell proliferation</topic><topic>Cholesterol Side-Chain Cleavage Enzyme - genetics</topic><topic>Cyclic AMP</topic><topic>Dihydrotestosterone - analogs & derivatives</topic><topic>Dihydrotestosterone - pharmacology</topic><topic>Female</topic><topic>Fetal calf serum</topic><topic>Fibroblast growth factor 9</topic><topic>Fibroblast Growth Factor 9 - genetics</topic><topic>Fibroblast Growth Factor 9 - pharmacology</topic><topic>Fibroblast growth factor receptor 9</topic><topic>Fibroblasts</topic><topic>Follicle-stimulating hormone</topic><topic>Follicles</topic><topic>Forskolin</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gonadotropins</topic><topic>Granulosa cells</topic><topic>Granulosa Cells - drug effects</topic><topic>Granulosa Cells - metabolism</topic><topic>Growth factors</topic><topic>Hormones</topic><topic>Hydroxysteroids</topic><topic>Insulin-like growth factor I</topic><topic>Mouse mammary tumor virus</topic><topic>Phosphoproteins - genetics</topic><topic>Pituitary (anterior)</topic><topic>Pregnenolone</topic><topic>Pregnenolone - genetics</topic><topic>Progesterone</topic><topic>Receptor mechanisms</topic><topic>Receptors, FSH - genetics</topic><topic>Reproduction-Development</topic><topic>Reproductive status</topic><topic>Serum-free medium</topic><topic>Sex hormones</topic><topic>Steroidogenesis</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreiber, Nicole B</creatorcontrib><creatorcontrib>Spicer, Leon J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreiber, Nicole B</au><au>Spicer, Leon J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>153</volume><issue>9</issue><spage>4491</spage><epage>4501</epage><pages>4491-4501</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract><![CDATA[Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.]]></abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>22798350</pmid><doi>10.1210/en.2012-1003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2012-09, Vol.153 (9), p.4491-4501 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3423607 |
source | MEDLINE; Oxford University Press Journals Current; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Journals@Ovid Complete |
subjects | Abundance Animals Autocrine signalling Biological and medical sciences Cattle Cell proliferation Cholesterol Side-Chain Cleavage Enzyme - genetics Cyclic AMP Dihydrotestosterone - analogs & derivatives Dihydrotestosterone - pharmacology Female Fetal calf serum Fibroblast growth factor 9 Fibroblast Growth Factor 9 - genetics Fibroblast Growth Factor 9 - pharmacology Fibroblast growth factor receptor 9 Fibroblasts Follicle-stimulating hormone Follicles Forskolin Fundamental and applied biological sciences. Psychology Gene expression Gonadotropins Granulosa cells Granulosa Cells - drug effects Granulosa Cells - metabolism Growth factors Hormones Hydroxysteroids Insulin-like growth factor I Mouse mammary tumor virus Phosphoproteins - genetics Pituitary (anterior) Pregnenolone Pregnenolone - genetics Progesterone Receptor mechanisms Receptors, FSH - genetics Reproduction-Development Reproductive status Serum-free medium Sex hormones Steroidogenesis Vertebrates: endocrinology |
title | Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Fibroblast%20Growth%20Factor%209%20(FGF9)%20on%20Steroidogenesis%20and%20Gene%20Expression%20and%20Control%20of%20FGF9%20mRNA%20in%20Bovine%20Granulosa%20Cells&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Schreiber,%20Nicole%20B&rft.date=2012-09-01&rft.volume=153&rft.issue=9&rft.spage=4491&rft.epage=4501&rft.pages=4491-4501&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2012-1003&rft_dat=%3Cproquest_pubme%3E1035106746%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130623066&rft_id=info:pmid/22798350&rft_oup_id=10.1210/en.2012-1003&rfr_iscdi=true |