Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier
Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment...
Gespeichert in:
Veröffentlicht in: | Journal of Cerebral Blood Flow & Metabolism 2012-08, Vol.32 (8), p.1457-1467 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1467 |
---|---|
container_issue | 8 |
container_start_page | 1457 |
container_title | Journal of Cerebral Blood Flow & Metabolism |
container_volume | 32 |
creator | Ezan, Pascal André, Pascal Cisternino, Salvatore Saubaméa, Bruno Boulay, Anne-Cécile Doutremer, Suzette Thomas, Marie-Annick Quenech'du, Nicole Giaume, Christian Cohen-Salmon, Martine |
description | Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity. |
doi_str_mv | 10.1038/jcbfm.2012.45 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3421093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2012.45</sage_id><sourcerecordid>2753677061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</originalsourceid><addsrcrecordid>eNptkV2LEzEUhoMobl299FYGRFBhar6TuRHa-rFCwRtF70ImPdOmTpM1mS5653_wH_pLzGzrui5eHTh58p5z3hehhwRPCWb6xda13W5KMaFTLm6hCRGiqRUm8jaaYKpILZX-fILu5bzFGGsmxF10QilXVOJmguavoIfBx1DFrprlIcV1721fLWII8M2HXH0C-wVKHTZQzfsYV79-_Jwn60M1tyl5SPfRnc72GR4c6yn6-Ob1h8VZvXz_9t1itqydJGyoW0la2YJTSoNaaUlwK1alyZxkTPBWSes4b7S2reJOc0aFxbLF0DEJzjXsFL086J7v2x2sHIQh2d6cJ7-z6buJ1pt_X4LfmHW8MIxTghtWBJ4dBDY3vp3NlmbsYV4cY5RckMI-PQ5L8ese8mB2Pjvoexsg7rMp3nNNGolxQR_fQLdxn0KxYqQ0YVowUaj6QLkUc07QXW1A8CVnLpM0Y5KGj_yj69de0X-iK8CTI2Czs32XbHA-_-UkFYI1o9DzA5ftGq6v9r-pvwFkc7Q8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038138535</pqid></control><display><type>article</type><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><source>MEDLINE</source><source>PubMed Central</source><source>SAGE Journals</source><source>EZB Electronic Journals Library</source><creator>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</creator><creatorcontrib>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</creatorcontrib><description>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2012.45</identifier><identifier>PMID: 22472609</identifier><identifier>CODEN: JCBMDN</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Amyloidosis ; Animals ; Aquaporin 4 ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - ultrastructure ; Basal lamina ; Biological and medical sciences ; Blood vessels ; Blood-brain barrier ; Blood-Brain Barrier - growth & development ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - ultrastructure ; Brain ; Brain - blood supply ; Brain - growth & development ; Brain - metabolism ; Brain - ultrastructure ; Cerebral blood flow ; Cerebrovascular Circulation - genetics ; Connexin 30 ; Connexin 43 ; Connexin 43 - genetics ; Connexin 43 - physiology ; Connexins ; Connexins - genetics ; Connexins - physiology ; Dystroglycan ; Edema ; Gap junctions ; Gene Deletion ; Glial cells ; Glial fibrillary acidic protein ; Ions ; Life Sciences ; Mechanical stimuli ; Medical sciences ; Metabolic diseases ; Mice ; Mice, Knockout ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Microvessels - growth & development ; Microvessels - metabolism ; Microvessels - ultrastructure ; Neural networks ; Neurobiology ; Neurology ; Neurons and Cognition ; Other metabolic disorders ; Perfusion ; Pressure ; Vascular diseases and vascular malformations of the nervous system ; Vascular system</subject><ispartof>Journal of Cerebral Blood Flow & Metabolism, 2012-08, Vol.32 (8), p.1457-1467</ispartof><rights>2012 ISCBFM</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012 International Society for Cerebral Blood Flow & Metabolism, Inc. 2012 International Society for Cerebral Blood Flow & Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</citedby><cites>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</cites><orcidid>0000-0002-5312-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421093/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421093/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26255395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22472609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04027321$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ezan, Pascal</creatorcontrib><creatorcontrib>André, Pascal</creatorcontrib><creatorcontrib>Cisternino, Salvatore</creatorcontrib><creatorcontrib>Saubaméa, Bruno</creatorcontrib><creatorcontrib>Boulay, Anne-Cécile</creatorcontrib><creatorcontrib>Doutremer, Suzette</creatorcontrib><creatorcontrib>Thomas, Marie-Annick</creatorcontrib><creatorcontrib>Quenech'du, Nicole</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><creatorcontrib>Cohen-Salmon, Martine</creatorcontrib><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><title>Journal of Cerebral Blood Flow & Metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</description><subject>Amyloidosis</subject><subject>Animals</subject><subject>Aquaporin 4</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - ultrastructure</subject><subject>Basal lamina</subject><subject>Biological and medical sciences</subject><subject>Blood vessels</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - growth & development</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - ultrastructure</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - genetics</subject><subject>Connexin 30</subject><subject>Connexin 43</subject><subject>Connexin 43 - genetics</subject><subject>Connexin 43 - physiology</subject><subject>Connexins</subject><subject>Connexins - genetics</subject><subject>Connexins - physiology</subject><subject>Dystroglycan</subject><subject>Edema</subject><subject>Gap junctions</subject><subject>Gene Deletion</subject><subject>Glial cells</subject><subject>Glial fibrillary acidic protein</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Mechanical stimuli</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microvessels - growth & development</subject><subject>Microvessels - metabolism</subject><subject>Microvessels - ultrastructure</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons and Cognition</subject><subject>Other metabolic disorders</subject><subject>Perfusion</subject><subject>Pressure</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Vascular system</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkV2LEzEUhoMobl299FYGRFBhar6TuRHa-rFCwRtF70ImPdOmTpM1mS5653_wH_pLzGzrui5eHTh58p5z3hehhwRPCWb6xda13W5KMaFTLm6hCRGiqRUm8jaaYKpILZX-fILu5bzFGGsmxF10QilXVOJmguavoIfBx1DFrprlIcV1721fLWII8M2HXH0C-wVKHTZQzfsYV79-_Jwn60M1tyl5SPfRnc72GR4c6yn6-Ob1h8VZvXz_9t1itqydJGyoW0la2YJTSoNaaUlwK1alyZxkTPBWSes4b7S2reJOc0aFxbLF0DEJzjXsFL086J7v2x2sHIQh2d6cJ7-z6buJ1pt_X4LfmHW8MIxTghtWBJ4dBDY3vp3NlmbsYV4cY5RckMI-PQ5L8ese8mB2Pjvoexsg7rMp3nNNGolxQR_fQLdxn0KxYqQ0YVowUaj6QLkUc07QXW1A8CVnLpM0Y5KGj_yj69de0X-iK8CTI2Czs32XbHA-_-UkFYI1o9DzA5ftGq6v9r-pvwFkc7Q8</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Ezan, Pascal</creator><creator>André, Pascal</creator><creator>Cisternino, Salvatore</creator><creator>Saubaméa, Bruno</creator><creator>Boulay, Anne-Cécile</creator><creator>Doutremer, Suzette</creator><creator>Thomas, Marie-Annick</creator><creator>Quenech'du, Nicole</creator><creator>Giaume, Christian</creator><creator>Cohen-Salmon, Martine</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5312-8476</orcidid></search><sort><creationdate>20120801</creationdate><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><author>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amyloidosis</topic><topic>Animals</topic><topic>Aquaporin 4</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - ultrastructure</topic><topic>Basal lamina</topic><topic>Biological and medical sciences</topic><topic>Blood vessels</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - growth & development</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - ultrastructure</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - genetics</topic><topic>Connexin 30</topic><topic>Connexin 43</topic><topic>Connexin 43 - genetics</topic><topic>Connexin 43 - physiology</topic><topic>Connexins</topic><topic>Connexins - genetics</topic><topic>Connexins - physiology</topic><topic>Dystroglycan</topic><topic>Edema</topic><topic>Gap junctions</topic><topic>Gene Deletion</topic><topic>Glial cells</topic><topic>Glial fibrillary acidic protein</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Mechanical stimuli</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microvessels - growth & development</topic><topic>Microvessels - metabolism</topic><topic>Microvessels - ultrastructure</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons and Cognition</topic><topic>Other metabolic disorders</topic><topic>Perfusion</topic><topic>Pressure</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Vascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezan, Pascal</creatorcontrib><creatorcontrib>André, Pascal</creatorcontrib><creatorcontrib>Cisternino, Salvatore</creatorcontrib><creatorcontrib>Saubaméa, Bruno</creatorcontrib><creatorcontrib>Boulay, Anne-Cécile</creatorcontrib><creatorcontrib>Doutremer, Suzette</creatorcontrib><creatorcontrib>Thomas, Marie-Annick</creatorcontrib><creatorcontrib>Quenech'du, Nicole</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><creatorcontrib>Cohen-Salmon, Martine</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Cerebral Blood Flow & Metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezan, Pascal</au><au>André, Pascal</au><au>Cisternino, Salvatore</au><au>Saubaméa, Bruno</au><au>Boulay, Anne-Cécile</au><au>Doutremer, Suzette</au><au>Thomas, Marie-Annick</au><au>Quenech'du, Nicole</au><au>Giaume, Christian</au><au>Cohen-Salmon, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</atitle><jtitle>Journal of Cerebral Blood Flow & Metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>32</volume><issue>8</issue><spage>1457</spage><epage>1467</epage><pages>1457-1467</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><coden>JCBMDN</coden><abstract>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>22472609</pmid><doi>10.1038/jcbfm.2012.45</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5312-8476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of Cerebral Blood Flow & Metabolism, 2012-08, Vol.32 (8), p.1457-1467 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3421093 |
source | MEDLINE; PubMed Central; SAGE Journals; EZB Electronic Journals Library |
subjects | Amyloidosis Animals Aquaporin 4 Astrocytes Astrocytes - metabolism Astrocytes - ultrastructure Basal lamina Biological and medical sciences Blood vessels Blood-brain barrier Blood-Brain Barrier - growth & development Blood-Brain Barrier - metabolism Blood-Brain Barrier - ultrastructure Brain Brain - blood supply Brain - growth & development Brain - metabolism Brain - ultrastructure Cerebral blood flow Cerebrovascular Circulation - genetics Connexin 30 Connexin 43 Connexin 43 - genetics Connexin 43 - physiology Connexins Connexins - genetics Connexins - physiology Dystroglycan Edema Gap junctions Gene Deletion Glial cells Glial fibrillary acidic protein Ions Life Sciences Mechanical stimuli Medical sciences Metabolic diseases Mice Mice, Knockout Microscopy, Confocal Microscopy, Electron, Transmission Microvessels - growth & development Microvessels - metabolism Microvessels - ultrastructure Neural networks Neurobiology Neurology Neurons and Cognition Other metabolic disorders Perfusion Pressure Vascular diseases and vascular malformations of the nervous system Vascular system |
title | Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20Astroglial%20Connexins%20Weakens%20the%20Blood%E2%80%93Brain%20Barrier&rft.jtitle=Journal%20of%20Cerebral%20Blood%20Flow%20&%20Metabolism&rft.au=Ezan,%20Pascal&rft.date=2012-08-01&rft.volume=32&rft.issue=8&rft.spage=1457&rft.epage=1467&rft.pages=1457-1467&rft.issn=0271-678X&rft.eissn=1559-7016&rft.coden=JCBMDN&rft_id=info:doi/10.1038/jcbfm.2012.45&rft_dat=%3Cproquest_pubme%3E2753677061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038138535&rft_id=info:pmid/22472609&rft_sage_id=10.1038_jcbfm.2012.45&rfr_iscdi=true |