Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier

Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Cerebral Blood Flow & Metabolism 2012-08, Vol.32 (8), p.1457-1467
Hauptverfasser: Ezan, Pascal, André, Pascal, Cisternino, Salvatore, Saubaméa, Bruno, Boulay, Anne-Cécile, Doutremer, Suzette, Thomas, Marie-Annick, Quenech'du, Nicole, Giaume, Christian, Cohen-Salmon, Martine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1467
container_issue 8
container_start_page 1457
container_title Journal of Cerebral Blood Flow & Metabolism
container_volume 32
creator Ezan, Pascal
André, Pascal
Cisternino, Salvatore
Saubaméa, Bruno
Boulay, Anne-Cécile
Doutremer, Suzette
Thomas, Marie-Annick
Quenech'du, Nicole
Giaume, Christian
Cohen-Salmon, Martine
description Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.
doi_str_mv 10.1038/jcbfm.2012.45
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3421093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2012.45</sage_id><sourcerecordid>2753677061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</originalsourceid><addsrcrecordid>eNptkV2LEzEUhoMobl299FYGRFBhar6TuRHa-rFCwRtF70ImPdOmTpM1mS5653_wH_pLzGzrui5eHTh58p5z3hehhwRPCWb6xda13W5KMaFTLm6hCRGiqRUm8jaaYKpILZX-fILu5bzFGGsmxF10QilXVOJmguavoIfBx1DFrprlIcV1721fLWII8M2HXH0C-wVKHTZQzfsYV79-_Jwn60M1tyl5SPfRnc72GR4c6yn6-Ob1h8VZvXz_9t1itqydJGyoW0la2YJTSoNaaUlwK1alyZxkTPBWSes4b7S2reJOc0aFxbLF0DEJzjXsFL086J7v2x2sHIQh2d6cJ7-z6buJ1pt_X4LfmHW8MIxTghtWBJ4dBDY3vp3NlmbsYV4cY5RckMI-PQ5L8ese8mB2Pjvoexsg7rMp3nNNGolxQR_fQLdxn0KxYqQ0YVowUaj6QLkUc07QXW1A8CVnLpM0Y5KGj_yj69de0X-iK8CTI2Czs32XbHA-_-UkFYI1o9DzA5ftGq6v9r-pvwFkc7Q8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038138535</pqid></control><display><type>article</type><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><source>MEDLINE</source><source>PubMed Central</source><source>SAGE Journals</source><source>EZB Electronic Journals Library</source><creator>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</creator><creatorcontrib>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</creatorcontrib><description>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2012.45</identifier><identifier>PMID: 22472609</identifier><identifier>CODEN: JCBMDN</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Amyloidosis ; Animals ; Aquaporin 4 ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - ultrastructure ; Basal lamina ; Biological and medical sciences ; Blood vessels ; Blood-brain barrier ; Blood-Brain Barrier - growth &amp; development ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - ultrastructure ; Brain ; Brain - blood supply ; Brain - growth &amp; development ; Brain - metabolism ; Brain - ultrastructure ; Cerebral blood flow ; Cerebrovascular Circulation - genetics ; Connexin 30 ; Connexin 43 ; Connexin 43 - genetics ; Connexin 43 - physiology ; Connexins ; Connexins - genetics ; Connexins - physiology ; Dystroglycan ; Edema ; Gap junctions ; Gene Deletion ; Glial cells ; Glial fibrillary acidic protein ; Ions ; Life Sciences ; Mechanical stimuli ; Medical sciences ; Metabolic diseases ; Mice ; Mice, Knockout ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Microvessels - growth &amp; development ; Microvessels - metabolism ; Microvessels - ultrastructure ; Neural networks ; Neurobiology ; Neurology ; Neurons and Cognition ; Other metabolic disorders ; Perfusion ; Pressure ; Vascular diseases and vascular malformations of the nervous system ; Vascular system</subject><ispartof>Journal of Cerebral Blood Flow &amp; Metabolism, 2012-08, Vol.32 (8), p.1457-1467</ispartof><rights>2012 ISCBFM</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012 International Society for Cerebral Blood Flow &amp; Metabolism, Inc. 2012 International Society for Cerebral Blood Flow &amp; Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</citedby><cites>FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</cites><orcidid>0000-0002-5312-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421093/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421093/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26255395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22472609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04027321$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ezan, Pascal</creatorcontrib><creatorcontrib>André, Pascal</creatorcontrib><creatorcontrib>Cisternino, Salvatore</creatorcontrib><creatorcontrib>Saubaméa, Bruno</creatorcontrib><creatorcontrib>Boulay, Anne-Cécile</creatorcontrib><creatorcontrib>Doutremer, Suzette</creatorcontrib><creatorcontrib>Thomas, Marie-Annick</creatorcontrib><creatorcontrib>Quenech'du, Nicole</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><creatorcontrib>Cohen-Salmon, Martine</creatorcontrib><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><title>Journal of Cerebral Blood Flow &amp; Metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</description><subject>Amyloidosis</subject><subject>Animals</subject><subject>Aquaporin 4</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - ultrastructure</subject><subject>Basal lamina</subject><subject>Biological and medical sciences</subject><subject>Blood vessels</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - growth &amp; development</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - ultrastructure</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - genetics</subject><subject>Connexin 30</subject><subject>Connexin 43</subject><subject>Connexin 43 - genetics</subject><subject>Connexin 43 - physiology</subject><subject>Connexins</subject><subject>Connexins - genetics</subject><subject>Connexins - physiology</subject><subject>Dystroglycan</subject><subject>Edema</subject><subject>Gap junctions</subject><subject>Gene Deletion</subject><subject>Glial cells</subject><subject>Glial fibrillary acidic protein</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Mechanical stimuli</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microvessels - growth &amp; development</subject><subject>Microvessels - metabolism</subject><subject>Microvessels - ultrastructure</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons and Cognition</subject><subject>Other metabolic disorders</subject><subject>Perfusion</subject><subject>Pressure</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Vascular system</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkV2LEzEUhoMobl299FYGRFBhar6TuRHa-rFCwRtF70ImPdOmTpM1mS5653_wH_pLzGzrui5eHTh58p5z3hehhwRPCWb6xda13W5KMaFTLm6hCRGiqRUm8jaaYKpILZX-fILu5bzFGGsmxF10QilXVOJmguavoIfBx1DFrprlIcV1721fLWII8M2HXH0C-wVKHTZQzfsYV79-_Jwn60M1tyl5SPfRnc72GR4c6yn6-Ob1h8VZvXz_9t1itqydJGyoW0la2YJTSoNaaUlwK1alyZxkTPBWSes4b7S2reJOc0aFxbLF0DEJzjXsFL086J7v2x2sHIQh2d6cJ7-z6buJ1pt_X4LfmHW8MIxTghtWBJ4dBDY3vp3NlmbsYV4cY5RckMI-PQ5L8ese8mB2Pjvoexsg7rMp3nNNGolxQR_fQLdxn0KxYqQ0YVowUaj6QLkUc07QXW1A8CVnLpM0Y5KGj_yj69de0X-iK8CTI2Czs32XbHA-_-UkFYI1o9DzA5ftGq6v9r-pvwFkc7Q8</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Ezan, Pascal</creator><creator>André, Pascal</creator><creator>Cisternino, Salvatore</creator><creator>Saubaméa, Bruno</creator><creator>Boulay, Anne-Cécile</creator><creator>Doutremer, Suzette</creator><creator>Thomas, Marie-Annick</creator><creator>Quenech'du, Nicole</creator><creator>Giaume, Christian</creator><creator>Cohen-Salmon, Martine</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5312-8476</orcidid></search><sort><creationdate>20120801</creationdate><title>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</title><author>Ezan, Pascal ; André, Pascal ; Cisternino, Salvatore ; Saubaméa, Bruno ; Boulay, Anne-Cécile ; Doutremer, Suzette ; Thomas, Marie-Annick ; Quenech'du, Nicole ; Giaume, Christian ; Cohen-Salmon, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-b61b6bec778e7d8610b5db613c63354b76ac44988ab74c84325a06b0ef36ecc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amyloidosis</topic><topic>Animals</topic><topic>Aquaporin 4</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - ultrastructure</topic><topic>Basal lamina</topic><topic>Biological and medical sciences</topic><topic>Blood vessels</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - growth &amp; development</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - ultrastructure</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - genetics</topic><topic>Connexin 30</topic><topic>Connexin 43</topic><topic>Connexin 43 - genetics</topic><topic>Connexin 43 - physiology</topic><topic>Connexins</topic><topic>Connexins - genetics</topic><topic>Connexins - physiology</topic><topic>Dystroglycan</topic><topic>Edema</topic><topic>Gap junctions</topic><topic>Gene Deletion</topic><topic>Glial cells</topic><topic>Glial fibrillary acidic protein</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Mechanical stimuli</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microvessels - growth &amp; development</topic><topic>Microvessels - metabolism</topic><topic>Microvessels - ultrastructure</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons and Cognition</topic><topic>Other metabolic disorders</topic><topic>Perfusion</topic><topic>Pressure</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Vascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezan, Pascal</creatorcontrib><creatorcontrib>André, Pascal</creatorcontrib><creatorcontrib>Cisternino, Salvatore</creatorcontrib><creatorcontrib>Saubaméa, Bruno</creatorcontrib><creatorcontrib>Boulay, Anne-Cécile</creatorcontrib><creatorcontrib>Doutremer, Suzette</creatorcontrib><creatorcontrib>Thomas, Marie-Annick</creatorcontrib><creatorcontrib>Quenech'du, Nicole</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><creatorcontrib>Cohen-Salmon, Martine</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Cerebral Blood Flow &amp; Metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezan, Pascal</au><au>André, Pascal</au><au>Cisternino, Salvatore</au><au>Saubaméa, Bruno</au><au>Boulay, Anne-Cécile</au><au>Doutremer, Suzette</au><au>Thomas, Marie-Annick</au><au>Quenech'du, Nicole</au><au>Giaume, Christian</au><au>Cohen-Salmon, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier</atitle><jtitle>Journal of Cerebral Blood Flow &amp; Metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>32</volume><issue>8</issue><spage>1457</spage><epage>1467</epage><pages>1457-1467</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><coden>JCBMDN</coden><abstract>Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood–brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>22472609</pmid><doi>10.1038/jcbfm.2012.45</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5312-8476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of Cerebral Blood Flow & Metabolism, 2012-08, Vol.32 (8), p.1457-1467
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3421093
source MEDLINE; PubMed Central; SAGE Journals; EZB Electronic Journals Library
subjects Amyloidosis
Animals
Aquaporin 4
Astrocytes
Astrocytes - metabolism
Astrocytes - ultrastructure
Basal lamina
Biological and medical sciences
Blood vessels
Blood-brain barrier
Blood-Brain Barrier - growth & development
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - ultrastructure
Brain
Brain - blood supply
Brain - growth & development
Brain - metabolism
Brain - ultrastructure
Cerebral blood flow
Cerebrovascular Circulation - genetics
Connexin 30
Connexin 43
Connexin 43 - genetics
Connexin 43 - physiology
Connexins
Connexins - genetics
Connexins - physiology
Dystroglycan
Edema
Gap junctions
Gene Deletion
Glial cells
Glial fibrillary acidic protein
Ions
Life Sciences
Mechanical stimuli
Medical sciences
Metabolic diseases
Mice
Mice, Knockout
Microscopy, Confocal
Microscopy, Electron, Transmission
Microvessels - growth & development
Microvessels - metabolism
Microvessels - ultrastructure
Neural networks
Neurobiology
Neurology
Neurons and Cognition
Other metabolic disorders
Perfusion
Pressure
Vascular diseases and vascular malformations of the nervous system
Vascular system
title Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20Astroglial%20Connexins%20Weakens%20the%20Blood%E2%80%93Brain%20Barrier&rft.jtitle=Journal%20of%20Cerebral%20Blood%20Flow%20&%20Metabolism&rft.au=Ezan,%20Pascal&rft.date=2012-08-01&rft.volume=32&rft.issue=8&rft.spage=1457&rft.epage=1467&rft.pages=1457-1467&rft.issn=0271-678X&rft.eissn=1559-7016&rft.coden=JCBMDN&rft_id=info:doi/10.1038/jcbfm.2012.45&rft_dat=%3Cproquest_pubme%3E2753677061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038138535&rft_id=info:pmid/22472609&rft_sage_id=10.1038_jcbfm.2012.45&rfr_iscdi=true