Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes

Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2011-09, Vol.31 (37), p.13224-13235
Hauptverfasser: Jenkins, Paul M, McIntyre, Jeremy C, Zhang, Lian, Anantharam, Arun, Vesely, Eileen D, Arendt, Kristin L, Carruthers, Cynthia J L, Kerppola, Tom K, Iñiguez-Lluhí, Jorge A, Holz, Ronald W, Sutton, Michael A, Martens, Jeffrey R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13235
container_issue 37
container_start_page 13224
container_title The Journal of neuroscience
container_volume 31
creator Jenkins, Paul M
McIntyre, Jeremy C
Zhang, Lian
Anantharam, Arun
Vesely, Eileen D
Arendt, Kristin L
Carruthers, Cynthia J L
Kerppola, Tom K
Iñiguez-Lluhí, Jorge A
Holz, Ronald W
Sutton, Michael A
Martens, Jeffrey R
description Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.
doi_str_mv 10.1523/JNEUROSCI.0976-11.2011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>890671602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-35d65c8460c6e0cf7cc40b200f8583273063b4a13604eaa15ad770c2db5439bc3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EotvCX6hy45Rlxnbs5IKEVgVaVVSi9IrlOJOuIbGDnaDy78mqZQWnObwfM6OHsXOELVZcvL36fHH35eZ2d7mFRqsSccsB8RnbrGpTcgn4nG2AayiV1PKEneb8HQA0oH7JTjg2qGuoNuzb7dIuwc9lRxOFjsJc2IcY7FDMyfa9dz98uC9iX3Q-zz64VR6mvS32NFOKIyXviinONme_jIXb2xBoKFwcp4EeKL9iL3o7ZHr9NM_Y3YeLr7tP5fXNx8vd--vSSRRzKapOVa6WCpwicL12TkLLAfq6qgXXApRopUWhQJK1WNlOa3C8ayspmtaJM_busXda2pE6t_6R7GCm5EebfptovflfCX5v7uMvIyRWqlFrwZunghR_LpRnM_rsaBhsoLhkUzegNCrgq1M9Ol2KOSfqj1sQzIGNObIxBzYG0RzYrMHzf288xv7CEH8A82COfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890671602</pqid></control><display><type>article</type><title>Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Jenkins, Paul M ; McIntyre, Jeremy C ; Zhang, Lian ; Anantharam, Arun ; Vesely, Eileen D ; Arendt, Kristin L ; Carruthers, Cynthia J L ; Kerppola, Tom K ; Iñiguez-Lluhí, Jorge A ; Holz, Ronald W ; Sutton, Michael A ; Martens, Jeffrey R</creator><creatorcontrib>Jenkins, Paul M ; McIntyre, Jeremy C ; Zhang, Lian ; Anantharam, Arun ; Vesely, Eileen D ; Arendt, Kristin L ; Carruthers, Cynthia J L ; Kerppola, Tom K ; Iñiguez-Lluhí, Jorge A ; Holz, Ronald W ; Sutton, Michael A ; Martens, Jeffrey R</creatorcontrib><description>Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0976-11.2011</identifier><identifier>PMID: 21917805</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Axonal Transport - physiology ; Cell Membrane - metabolism ; Cells, Cultured ; Cercopithecus aethiops ; COS Cells ; Female ; Hippocampus - metabolism ; Hippocampus - physiology ; Male ; Membrane Potentials ; Neurons - metabolism ; Neurons - physiology ; Patch-Clamp Techniques - methods ; Protein Subunits - metabolism ; Protein Transport - physiology ; Rats ; Shaker Superfamily of Potassium Channels - metabolism</subject><ispartof>The Journal of neuroscience, 2011-09, Vol.31 (37), p.13224-13235</ispartof><rights>Copyright © 2011 the authors 0270-6474/11/3113224-12$15.00/0 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-35d65c8460c6e0cf7cc40b200f8583273063b4a13604eaa15ad770c2db5439bc3</citedby><cites>FETCH-LOGICAL-c413t-35d65c8460c6e0cf7cc40b200f8583273063b4a13604eaa15ad770c2db5439bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415696/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415696/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21917805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jenkins, Paul M</creatorcontrib><creatorcontrib>McIntyre, Jeremy C</creatorcontrib><creatorcontrib>Zhang, Lian</creatorcontrib><creatorcontrib>Anantharam, Arun</creatorcontrib><creatorcontrib>Vesely, Eileen D</creatorcontrib><creatorcontrib>Arendt, Kristin L</creatorcontrib><creatorcontrib>Carruthers, Cynthia J L</creatorcontrib><creatorcontrib>Kerppola, Tom K</creatorcontrib><creatorcontrib>Iñiguez-Lluhí, Jorge A</creatorcontrib><creatorcontrib>Holz, Ronald W</creatorcontrib><creatorcontrib>Sutton, Michael A</creatorcontrib><creatorcontrib>Martens, Jeffrey R</creatorcontrib><title>Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.</description><subject>Animals</subject><subject>Axonal Transport - physiology</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Female</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>Membrane Potentials</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Shaker Superfamily of Potassium Channels - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EotvCX6hy45Rlxnbs5IKEVgVaVVSi9IrlOJOuIbGDnaDy78mqZQWnObwfM6OHsXOELVZcvL36fHH35eZ2d7mFRqsSccsB8RnbrGpTcgn4nG2AayiV1PKEneb8HQA0oH7JTjg2qGuoNuzb7dIuwc9lRxOFjsJc2IcY7FDMyfa9dz98uC9iX3Q-zz64VR6mvS32NFOKIyXviinONme_jIXb2xBoKFwcp4EeKL9iL3o7ZHr9NM_Y3YeLr7tP5fXNx8vd--vSSRRzKapOVa6WCpwicL12TkLLAfq6qgXXApRopUWhQJK1WNlOa3C8ayspmtaJM_busXda2pE6t_6R7GCm5EebfptovflfCX5v7uMvIyRWqlFrwZunghR_LpRnM_rsaBhsoLhkUzegNCrgq1M9Ol2KOSfqj1sQzIGNObIxBzYG0RzYrMHzf288xv7CEH8A82COfQ</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>Jenkins, Paul M</creator><creator>McIntyre, Jeremy C</creator><creator>Zhang, Lian</creator><creator>Anantharam, Arun</creator><creator>Vesely, Eileen D</creator><creator>Arendt, Kristin L</creator><creator>Carruthers, Cynthia J L</creator><creator>Kerppola, Tom K</creator><creator>Iñiguez-Lluhí, Jorge A</creator><creator>Holz, Ronald W</creator><creator>Sutton, Michael A</creator><creator>Martens, Jeffrey R</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110914</creationdate><title>Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes</title><author>Jenkins, Paul M ; McIntyre, Jeremy C ; Zhang, Lian ; Anantharam, Arun ; Vesely, Eileen D ; Arendt, Kristin L ; Carruthers, Cynthia J L ; Kerppola, Tom K ; Iñiguez-Lluhí, Jorge A ; Holz, Ronald W ; Sutton, Michael A ; Martens, Jeffrey R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-35d65c8460c6e0cf7cc40b200f8583273063b4a13604eaa15ad770c2db5439bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Axonal Transport - physiology</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Female</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>Membrane Potentials</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Shaker Superfamily of Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenkins, Paul M</creatorcontrib><creatorcontrib>McIntyre, Jeremy C</creatorcontrib><creatorcontrib>Zhang, Lian</creatorcontrib><creatorcontrib>Anantharam, Arun</creatorcontrib><creatorcontrib>Vesely, Eileen D</creatorcontrib><creatorcontrib>Arendt, Kristin L</creatorcontrib><creatorcontrib>Carruthers, Cynthia J L</creatorcontrib><creatorcontrib>Kerppola, Tom K</creatorcontrib><creatorcontrib>Iñiguez-Lluhí, Jorge A</creatorcontrib><creatorcontrib>Holz, Ronald W</creatorcontrib><creatorcontrib>Sutton, Michael A</creatorcontrib><creatorcontrib>Martens, Jeffrey R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenkins, Paul M</au><au>McIntyre, Jeremy C</au><au>Zhang, Lian</au><au>Anantharam, Arun</au><au>Vesely, Eileen D</au><au>Arendt, Kristin L</au><au>Carruthers, Cynthia J L</au><au>Kerppola, Tom K</au><au>Iñiguez-Lluhí, Jorge A</au><au>Holz, Ronald W</au><au>Sutton, Michael A</au><au>Martens, Jeffrey R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2011-09-14</date><risdate>2011</risdate><volume>31</volume><issue>37</issue><spage>13224</spage><epage>13235</epage><pages>13224-13235</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>21917805</pmid><doi>10.1523/JNEUROSCI.0976-11.2011</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2011-09, Vol.31 (37), p.13224-13235
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415696
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Animals
Axonal Transport - physiology
Cell Membrane - metabolism
Cells, Cultured
Cercopithecus aethiops
COS Cells
Female
Hippocampus - metabolism
Hippocampus - physiology
Male
Membrane Potentials
Neurons - metabolism
Neurons - physiology
Patch-Clamp Techniques - methods
Protein Subunits - metabolism
Protein Transport - physiology
Rats
Shaker Superfamily of Potassium Channels - metabolism
title Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subunit-dependent%20axonal%20trafficking%20of%20distinct%20alpha%20heteromeric%20potassium%20channel%20complexes&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Jenkins,%20Paul%20M&rft.date=2011-09-14&rft.volume=31&rft.issue=37&rft.spage=13224&rft.epage=13235&rft.pages=13224-13235&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0976-11.2011&rft_dat=%3Cproquest_pubme%3E890671602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890671602&rft_id=info:pmid/21917805&rfr_iscdi=true