Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model

We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human gene therapy 2012-08, Vol.23 (8), p.871-882
Hauptverfasser: ZEBIN HU, GUPTA, Janhavi, PIENTA, Kenneth J, GUISE, Theresa, LEE, Chung, STERN, Paula H, STOCK, Stuart, SETH, Prem, ZHENWEI ZHANG, GERSENY, Helen, BERG, Arthur, YUN JU CHEN, ZHILING ZHANG, HONGYAN DU, BRENDLER, Charles B, XIANGHUI XIAO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 8
container_start_page 871
container_title Human gene therapy
container_volume 23
creator ZEBIN HU
GUPTA, Janhavi
PIENTA, Kenneth J
GUISE, Theresa
LEE, Chung
STERN, Paula H
STOCK, Stuart
SETH, Prem
ZHENWEI ZHANG
GERSENY, Helen
BERG, Arthur
YUN JU CHEN
ZHILING ZHANG
HONGYAN DU
BRENDLER, Charles B
XIANGHUI XIAO
description We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1(-) adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×10(10) viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis.
doi_str_mv 10.1089/hum.2012.040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3413899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069203067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-44045408fb6a6336ae18f9a2373edd320ac6e3fac2b1c35c02c5b4d8e74e2cbe3</originalsourceid><addsrcrecordid>eNqNkc1u1DAQgCMEoqVw44x8QeJAFv_m54JUlrZUalUklrM1cSYbo8QutnfRPgqvwYPwTHjVpcCNi-0Zfxp75iuK54wuGG3aN-NmXnDK-IJK-qA4ZkrVZS05f5jPVIqSCsmPiicxfqGUCVXVj4sjzpViUjXHxfdPu5hwtoa8x8luMeyIH8iNM37apZw97dH5rQ2biJGsIKwxWbcmqwAuDj7M--Ai-G9pJOdgkg_lzx_k0o22symSs5igm2wcsSfvvENyjQlyLtpIrCNAPgafw4RkCc5gINc-P5TXHqenxaMBpojPDvtJ8fn8bLX8UF7dXFwuT69KI2WdSimpVJI2Q1dBJUQFyJqhBS5qgX0vOAVToRjA8I4ZoQzlRnWyb7CWyE2H4qR4e1f3dtPN2Bt0KcCkb4OdIey0B6v_vXF21Gu_1UIy0bRtLvDqUCD4rxuMSc82GpwmcJjb0YxWLaeCVvV_oEJmMbKpMvr6DjV5RDHgcP8jRvVevM7i9V68zuIz_uLvLu7h36Yz8PIAQDQwDVmgsfEPV3HV0jzAX8L6ut4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034514486</pqid></control><display><type>article</type><title>Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>ZEBIN HU ; GUPTA, Janhavi ; PIENTA, Kenneth J ; GUISE, Theresa ; LEE, Chung ; STERN, Paula H ; STOCK, Stuart ; SETH, Prem ; ZHENWEI ZHANG ; GERSENY, Helen ; BERG, Arthur ; YUN JU CHEN ; ZHILING ZHANG ; HONGYAN DU ; BRENDLER, Charles B ; XIANGHUI XIAO</creator><creatorcontrib>ZEBIN HU ; GUPTA, Janhavi ; PIENTA, Kenneth J ; GUISE, Theresa ; LEE, Chung ; STERN, Paula H ; STOCK, Stuart ; SETH, Prem ; ZHENWEI ZHANG ; GERSENY, Helen ; BERG, Arthur ; YUN JU CHEN ; ZHILING ZHANG ; HONGYAN DU ; BRENDLER, Charles B ; XIANGHUI XIAO</creatorcontrib><description>We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1(-) adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×10(10) viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis.</description><identifier>ISSN: 1043-0342</identifier><identifier>EISSN: 1557-7422</identifier><identifier>DOI: 10.1089/hum.2012.040</identifier><identifier>PMID: 22551458</identifier><identifier>CODEN: HGTHE3</identifier><language>eng</language><publisher>Larchmont, NY: Liebert</publisher><subject>Adenoviridae - genetics ; Adenovirus ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animal models ; Animals ; Antitumor activity ; Applied cell therapy and gene therapy ; Biological and medical sciences ; Biotechnology ; Bone (trabecular) ; Bone cancer ; Bone growth ; Bone Neoplasms - secondary ; Bone Neoplasms - therapy ; Cell Line, Tumor ; Disease Models, Animal ; Fundamental and applied biological sciences. Psychology ; Gene therapy ; Genetic Vectors ; Health. Pharmaceutical industry ; HEK293 Cells ; Humans ; Hypercalcemia ; Industrial applications and implications. Economical aspects ; Male ; Medical sciences ; Metastases ; Mice ; Oncolysis ; Oncolytic Virotherapy ; Oncolytic Viruses - genetics ; Phosphorylation ; Prostate cancer ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - therapy ; Radiography ; Smad2 protein ; Smad2 Protein - genetics ; Smad2 Protein - metabolism ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; Transforming Growth Factor beta - antagonists &amp; inhibitors ; Transforming Growth Factor beta - genetics ; Transforming growth factor- beta ; transforming growth factor- beta receptors ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Tumor cells ; Tumors ; Veins ; Ventricle</subject><ispartof>Human gene therapy, 2012-08, Vol.23 (8), p.871-882</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright 2012, Mary Ann Liebert, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-44045408fb6a6336ae18f9a2373edd320ac6e3fac2b1c35c02c5b4d8e74e2cbe3</citedby><cites>FETCH-LOGICAL-c447t-44045408fb6a6336ae18f9a2373edd320ac6e3fac2b1c35c02c5b4d8e74e2cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26259063$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22551458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZEBIN HU</creatorcontrib><creatorcontrib>GUPTA, Janhavi</creatorcontrib><creatorcontrib>PIENTA, Kenneth J</creatorcontrib><creatorcontrib>GUISE, Theresa</creatorcontrib><creatorcontrib>LEE, Chung</creatorcontrib><creatorcontrib>STERN, Paula H</creatorcontrib><creatorcontrib>STOCK, Stuart</creatorcontrib><creatorcontrib>SETH, Prem</creatorcontrib><creatorcontrib>ZHENWEI ZHANG</creatorcontrib><creatorcontrib>GERSENY, Helen</creatorcontrib><creatorcontrib>BERG, Arthur</creatorcontrib><creatorcontrib>YUN JU CHEN</creatorcontrib><creatorcontrib>ZHILING ZHANG</creatorcontrib><creatorcontrib>HONGYAN DU</creatorcontrib><creatorcontrib>BRENDLER, Charles B</creatorcontrib><creatorcontrib>XIANGHUI XIAO</creatorcontrib><title>Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model</title><title>Human gene therapy</title><addtitle>Hum Gene Ther</addtitle><description>We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1(-) adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×10(10) viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis.</description><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Applied cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Bone (trabecular)</subject><subject>Bone cancer</subject><subject>Bone growth</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Neoplasms - therapy</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene therapy</subject><subject>Genetic Vectors</subject><subject>Health. Pharmaceutical industry</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypercalcemia</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metastases</subject><subject>Mice</subject><subject>Oncolysis</subject><subject>Oncolytic Virotherapy</subject><subject>Oncolytic Viruses - genetics</subject><subject>Phosphorylation</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - therapy</subject><subject>Radiography</subject><subject>Smad2 protein</subject><subject>Smad2 Protein - genetics</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>Transforming Growth Factor beta - antagonists &amp; inhibitors</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming growth factor- beta</subject><subject>transforming growth factor- beta receptors</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Veins</subject><subject>Ventricle</subject><issn>1043-0342</issn><issn>1557-7422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQgCMEoqVw44x8QeJAFv_m54JUlrZUalUklrM1cSYbo8QutnfRPgqvwYPwTHjVpcCNi-0Zfxp75iuK54wuGG3aN-NmXnDK-IJK-qA4ZkrVZS05f5jPVIqSCsmPiicxfqGUCVXVj4sjzpViUjXHxfdPu5hwtoa8x8luMeyIH8iNM37apZw97dH5rQ2biJGsIKwxWbcmqwAuDj7M--Ai-G9pJOdgkg_lzx_k0o22symSs5igm2wcsSfvvENyjQlyLtpIrCNAPgafw4RkCc5gINc-P5TXHqenxaMBpojPDvtJ8fn8bLX8UF7dXFwuT69KI2WdSimpVJI2Q1dBJUQFyJqhBS5qgX0vOAVToRjA8I4ZoQzlRnWyb7CWyE2H4qR4e1f3dtPN2Bt0KcCkb4OdIey0B6v_vXF21Gu_1UIy0bRtLvDqUCD4rxuMSc82GpwmcJjb0YxWLaeCVvV_oEJmMbKpMvr6DjV5RDHgcP8jRvVevM7i9V68zuIz_uLvLu7h36Yz8PIAQDQwDVmgsfEPV3HV0jzAX8L6ut4</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>ZEBIN HU</creator><creator>GUPTA, Janhavi</creator><creator>PIENTA, Kenneth J</creator><creator>GUISE, Theresa</creator><creator>LEE, Chung</creator><creator>STERN, Paula H</creator><creator>STOCK, Stuart</creator><creator>SETH, Prem</creator><creator>ZHENWEI ZHANG</creator><creator>GERSENY, Helen</creator><creator>BERG, Arthur</creator><creator>YUN JU CHEN</creator><creator>ZHILING ZHANG</creator><creator>HONGYAN DU</creator><creator>BRENDLER, Charles B</creator><creator>XIANGHUI XIAO</creator><general>Liebert</general><general>Mary Ann Liebert, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model</title><author>ZEBIN HU ; GUPTA, Janhavi ; PIENTA, Kenneth J ; GUISE, Theresa ; LEE, Chung ; STERN, Paula H ; STOCK, Stuart ; SETH, Prem ; ZHENWEI ZHANG ; GERSENY, Helen ; BERG, Arthur ; YUN JU CHEN ; ZHILING ZHANG ; HONGYAN DU ; BRENDLER, Charles B ; XIANGHUI XIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-44045408fb6a6336ae18f9a2373edd320ac6e3fac2b1c35c02c5b4d8e74e2cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Applied cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Bone (trabecular)</topic><topic>Bone cancer</topic><topic>Bone growth</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Neoplasms - therapy</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene therapy</topic><topic>Genetic Vectors</topic><topic>Health. Pharmaceutical industry</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypercalcemia</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metastases</topic><topic>Mice</topic><topic>Oncolysis</topic><topic>Oncolytic Virotherapy</topic><topic>Oncolytic Viruses - genetics</topic><topic>Phosphorylation</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - therapy</topic><topic>Radiography</topic><topic>Smad2 protein</topic><topic>Smad2 Protein - genetics</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>Transforming Growth Factor beta - antagonists &amp; inhibitors</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming growth factor- beta</topic><topic>transforming growth factor- beta receptors</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Veins</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZEBIN HU</creatorcontrib><creatorcontrib>GUPTA, Janhavi</creatorcontrib><creatorcontrib>PIENTA, Kenneth J</creatorcontrib><creatorcontrib>GUISE, Theresa</creatorcontrib><creatorcontrib>LEE, Chung</creatorcontrib><creatorcontrib>STERN, Paula H</creatorcontrib><creatorcontrib>STOCK, Stuart</creatorcontrib><creatorcontrib>SETH, Prem</creatorcontrib><creatorcontrib>ZHENWEI ZHANG</creatorcontrib><creatorcontrib>GERSENY, Helen</creatorcontrib><creatorcontrib>BERG, Arthur</creatorcontrib><creatorcontrib>YUN JU CHEN</creatorcontrib><creatorcontrib>ZHILING ZHANG</creatorcontrib><creatorcontrib>HONGYAN DU</creatorcontrib><creatorcontrib>BRENDLER, Charles B</creatorcontrib><creatorcontrib>XIANGHUI XIAO</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZEBIN HU</au><au>GUPTA, Janhavi</au><au>PIENTA, Kenneth J</au><au>GUISE, Theresa</au><au>LEE, Chung</au><au>STERN, Paula H</au><au>STOCK, Stuart</au><au>SETH, Prem</au><au>ZHENWEI ZHANG</au><au>GERSENY, Helen</au><au>BERG, Arthur</au><au>YUN JU CHEN</au><au>ZHILING ZHANG</au><au>HONGYAN DU</au><au>BRENDLER, Charles B</au><au>XIANGHUI XIAO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model</atitle><jtitle>Human gene therapy</jtitle><addtitle>Hum Gene Ther</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>23</volume><issue>8</issue><spage>871</spage><epage>882</epage><pages>871-882</pages><issn>1043-0342</issn><eissn>1557-7422</eissn><coden>HGTHE3</coden><abstract>We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1(-) adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×10(10) viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis.</abstract><cop>Larchmont, NY</cop><pub>Liebert</pub><pmid>22551458</pmid><doi>10.1089/hum.2012.040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-0342
ispartof Human gene therapy, 2012-08, Vol.23 (8), p.871-882
issn 1043-0342
1557-7422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3413899
source MEDLINE; Alma/SFX Local Collection
subjects Adenoviridae - genetics
Adenovirus
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animal models
Animals
Antitumor activity
Applied cell therapy and gene therapy
Biological and medical sciences
Biotechnology
Bone (trabecular)
Bone cancer
Bone growth
Bone Neoplasms - secondary
Bone Neoplasms - therapy
Cell Line, Tumor
Disease Models, Animal
Fundamental and applied biological sciences. Psychology
Gene therapy
Genetic Vectors
Health. Pharmaceutical industry
HEK293 Cells
Humans
Hypercalcemia
Industrial applications and implications. Economical aspects
Male
Medical sciences
Metastases
Mice
Oncolysis
Oncolytic Virotherapy
Oncolytic Viruses - genetics
Phosphorylation
Prostate cancer
Prostatic Neoplasms - genetics
Prostatic Neoplasms - pathology
Prostatic Neoplasms - therapy
Radiography
Smad2 protein
Smad2 Protein - genetics
Smad2 Protein - metabolism
Smad3 Protein - genetics
Smad3 Protein - metabolism
Transforming Growth Factor beta - antagonists & inhibitors
Transforming Growth Factor beta - genetics
Transforming growth factor- beta
transforming growth factor- beta receptors
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Tumor cells
Tumors
Veins
Ventricle
title Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systemic%20Delivery%20of%20Oncolytic%20Adenoviruses%20Targeting%20Transforming%20Growth%20Factor-%CE%B2%20Inhibits%20Established%20Bone%20Metastasis%20in%20a%20Prostate%20Cancer%20Mouse%20Model&rft.jtitle=Human%20gene%20therapy&rft.au=ZEBIN%20HU&rft.date=2012-08-01&rft.volume=23&rft.issue=8&rft.spage=871&rft.epage=882&rft.pages=871-882&rft.issn=1043-0342&rft.eissn=1557-7422&rft.coden=HGTHE3&rft_id=info:doi/10.1089/hum.2012.040&rft_dat=%3Cproquest_pubme%3E1069203067%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034514486&rft_id=info:pmid/22551458&rfr_iscdi=true