The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications

Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational psychiatry 2012-07, Vol.2 (7), p.e137-e137
Hauptverfasser: Carty, N C, Xu, J, Kurup, P, Brouillette, J, Goebel-Goody, S M, Austin, D R, Yuan, P, Chen, G, Correa, P R, Haroutunian, V, Pittenger, C, Lombroso, P J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e137
container_issue 7
container_start_page e137
container_title Translational psychiatry
container_volume 2
creator Carty, N C
Xu, J
Kurup, P
Brouillette, J
Goebel-Goody, S M
Austin, D R
Yuan, P
Chen, G
Correa, P R
Haroutunian, V
Pittenger, C
Lombroso, P J
description Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP 61 is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP 61 levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP 61 after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP 61 . STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP 61 levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP 61 and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP 61 accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP 61 inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.
doi_str_mv 10.1038/tp.2012.63
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024644104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</originalsourceid><addsrcrecordid>eNplkVFrFDEQxxdRbKl98QNIwBdR7sxks5usDwUpVQsFhV6fw2w2e5uym6xJVjjB727KteWqeUlgfvxmJv-ieA10DbSUH9O8ZhTYui6fFccMKrkqQcrnB--j4jTGW5pPxSUIeFkcMSYkgKDHxZ_NYEjaBR-tM2QefJwHTBgNud5c_PhE7DSPVmOy3kViHYl6sL_9PATjLBJ0HUlZMPnR6GXEQCajB3Q2TmRxnQnjzrptxpKd404PPlmdke7B-Kp40eMYzen9fVLcfLnYnH9bXX3_enn--WqlKyrTqkfW1l3X1MC7tpG0E1JUGsAYibo2fYMcTUWbvkLsS86ga6VAzlqgLXZSlyfF2d47L21ur41LAUc1Bzth2CmPVj2tODuorf-lSg60ZiIL3t0Lgv-5mJjUZKM244jO-CUqoIzXPMM8o2__QW_9ElxeT4FooJSVFDJT7_eUzl8fg-kfhwGq7oJVaVZ3waq6zPCbw_Ef0YcYM_BhD8RcclsTDnr-r_sLDjywxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791385878</pqid></control><display><type>article</type><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</creator><creatorcontrib>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</creatorcontrib><description>Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP 61 is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP 61 levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP 61 after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP 61 . STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP 61 levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP 61 and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP 61 accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP 61 inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/tp.2012.63</identifier><identifier>PMID: 22781170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/2388 ; 692/699/476/1799 ; Analysis of Variance ; Animals ; Antipsychotic Agents - pharmacology ; Antipsychotic Agents - therapeutic use ; Behavioral Sciences ; Biological Psychology ; Dizocilpine Maleate - pharmacology ; Gyrus Cinguli - drug effects ; Gyrus Cinguli - metabolism ; Humans ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurosciences ; Original ; original-article ; Pharmacotherapy ; Phencyclidine - pharmacology ; Phosphorylation - drug effects ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Protein Tyrosine Phosphatases, Non-Receptor - genetics ; Protein Tyrosine Phosphatases, Non-Receptor - metabolism ; Psychiatry ; Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors ; Receptors, N-Methyl-D-Aspartate - metabolism ; Schizophrenia - drug therapy ; Schizophrenia - etiology ; Schizophrenia - metabolism</subject><ispartof>Translational psychiatry, 2012-07, Vol.2 (7), p.e137-e137</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Jul 2012</rights><rights>Copyright © 2012 Macmillan Publishers Limited 2012 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</citedby><cites>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22781170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carty, N C</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Kurup, P</creatorcontrib><creatorcontrib>Brouillette, J</creatorcontrib><creatorcontrib>Goebel-Goody, S M</creatorcontrib><creatorcontrib>Austin, D R</creatorcontrib><creatorcontrib>Yuan, P</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Correa, P R</creatorcontrib><creatorcontrib>Haroutunian, V</creatorcontrib><creatorcontrib>Pittenger, C</creatorcontrib><creatorcontrib>Lombroso, P J</creatorcontrib><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP 61 is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP 61 levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP 61 after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP 61 . STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP 61 levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP 61 and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP 61 accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP 61 inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</description><subject>631/154/436/2388</subject><subject>692/699/476/1799</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Antipsychotic Agents - pharmacology</subject><subject>Antipsychotic Agents - therapeutic use</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>Gyrus Cinguli - drug effects</subject><subject>Gyrus Cinguli - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurosciences</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Phencyclidine - pharmacology</subject><subject>Phosphorylation - drug effects</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - genetics</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</subject><subject>Psychiatry</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Schizophrenia - drug therapy</subject><subject>Schizophrenia - etiology</subject><subject>Schizophrenia - metabolism</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkVFrFDEQxxdRbKl98QNIwBdR7sxks5usDwUpVQsFhV6fw2w2e5uym6xJVjjB727KteWqeUlgfvxmJv-ieA10DbSUH9O8ZhTYui6fFccMKrkqQcrnB--j4jTGW5pPxSUIeFkcMSYkgKDHxZ_NYEjaBR-tM2QefJwHTBgNud5c_PhE7DSPVmOy3kViHYl6sL_9PATjLBJ0HUlZMPnR6GXEQCajB3Q2TmRxnQnjzrptxpKd404PPlmdke7B-Kp40eMYzen9fVLcfLnYnH9bXX3_enn--WqlKyrTqkfW1l3X1MC7tpG0E1JUGsAYibo2fYMcTUWbvkLsS86ga6VAzlqgLXZSlyfF2d47L21ur41LAUc1Bzth2CmPVj2tODuorf-lSg60ZiIL3t0Lgv-5mJjUZKM244jO-CUqoIzXPMM8o2__QW_9ElxeT4FooJSVFDJT7_eUzl8fg-kfhwGq7oJVaVZ3waq6zPCbw_Ef0YcYM_BhD8RcclsTDnr-r_sLDjywxA</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Carty, N C</creator><creator>Xu, J</creator><creator>Kurup, P</creator><creator>Brouillette, J</creator><creator>Goebel-Goody, S M</creator><creator>Austin, D R</creator><creator>Yuan, P</creator><creator>Chen, G</creator><creator>Correa, P R</creator><creator>Haroutunian, V</creator><creator>Pittenger, C</creator><creator>Lombroso, P J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120710</creationdate><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><author>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/154/436/2388</topic><topic>692/699/476/1799</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Antipsychotic Agents - pharmacology</topic><topic>Antipsychotic Agents - therapeutic use</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>Gyrus Cinguli - drug effects</topic><topic>Gyrus Cinguli - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurosciences</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Phencyclidine - pharmacology</topic><topic>Phosphorylation - drug effects</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - genetics</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</topic><topic>Psychiatry</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Schizophrenia - drug therapy</topic><topic>Schizophrenia - etiology</topic><topic>Schizophrenia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carty, N C</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Kurup, P</creatorcontrib><creatorcontrib>Brouillette, J</creatorcontrib><creatorcontrib>Goebel-Goody, S M</creatorcontrib><creatorcontrib>Austin, D R</creatorcontrib><creatorcontrib>Yuan, P</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Correa, P R</creatorcontrib><creatorcontrib>Haroutunian, V</creatorcontrib><creatorcontrib>Pittenger, C</creatorcontrib><creatorcontrib>Lombroso, P J</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carty, N C</au><au>Xu, J</au><au>Kurup, P</au><au>Brouillette, J</au><au>Goebel-Goody, S M</au><au>Austin, D R</au><au>Yuan, P</au><au>Chen, G</au><au>Correa, P R</au><au>Haroutunian, V</au><au>Pittenger, C</au><au>Lombroso, P J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>2</volume><issue>7</issue><spage>e137</spage><epage>e137</epage><pages>e137-e137</pages><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP 61 is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP 61 levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP 61 after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP 61 . STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP 61 levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP 61 and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP 61 accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP 61 inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22781170</pmid><doi>10.1038/tp.2012.63</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3188
ispartof Translational psychiatry, 2012-07, Vol.2 (7), p.e137-e137
issn 2158-3188
2158-3188
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410627
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/154/436/2388
692/699/476/1799
Analysis of Variance
Animals
Antipsychotic Agents - pharmacology
Antipsychotic Agents - therapeutic use
Behavioral Sciences
Biological Psychology
Dizocilpine Maleate - pharmacology
Gyrus Cinguli - drug effects
Gyrus Cinguli - metabolism
Humans
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurosciences
Original
original-article
Pharmacotherapy
Phencyclidine - pharmacology
Phosphorylation - drug effects
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Protein Tyrosine Phosphatases, Non-Receptor - genetics
Protein Tyrosine Phosphatases, Non-Receptor - metabolism
Psychiatry
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate - metabolism
Schizophrenia - drug therapy
Schizophrenia - etiology
Schizophrenia - metabolism
title The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20tyrosine%20phosphatase%20STEP:%20implications%20in%20schizophrenia%20and%20the%20molecular%20mechanism%20underlying%20antipsychotic%20medications&rft.jtitle=Translational%20psychiatry&rft.au=Carty,%20N%20C&rft.date=2012-07-10&rft.volume=2&rft.issue=7&rft.spage=e137&rft.epage=e137&rft.pages=e137-e137&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/tp.2012.63&rft_dat=%3Cproquest_pubme%3E1024644104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791385878&rft_id=info:pmid/22781170&rfr_iscdi=true