The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications
Glutamatergic signaling through N -methyl- D -aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic...
Gespeichert in:
Veröffentlicht in: | Translational psychiatry 2012-07, Vol.2 (7), p.e137-e137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e137 |
---|---|
container_issue | 7 |
container_start_page | e137 |
container_title | Translational psychiatry |
container_volume | 2 |
creator | Carty, N C Xu, J Kurup, P Brouillette, J Goebel-Goody, S M Austin, D R Yuan, P Chen, G Correa, P R Haroutunian, V Pittenger, C Lombroso, P J |
description | Glutamatergic signaling through
N
-methyl-
D
-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP
61
is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP
61
levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP
61
after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP
61
. STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP
61
levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP
61
and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP
61
accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP
61
inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ. |
doi_str_mv | 10.1038/tp.2012.63 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024644104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</originalsourceid><addsrcrecordid>eNplkVFrFDEQxxdRbKl98QNIwBdR7sxks5usDwUpVQsFhV6fw2w2e5uym6xJVjjB727KteWqeUlgfvxmJv-ieA10DbSUH9O8ZhTYui6fFccMKrkqQcrnB--j4jTGW5pPxSUIeFkcMSYkgKDHxZ_NYEjaBR-tM2QefJwHTBgNud5c_PhE7DSPVmOy3kViHYl6sL_9PATjLBJ0HUlZMPnR6GXEQCajB3Q2TmRxnQnjzrptxpKd404PPlmdke7B-Kp40eMYzen9fVLcfLnYnH9bXX3_enn--WqlKyrTqkfW1l3X1MC7tpG0E1JUGsAYibo2fYMcTUWbvkLsS86ga6VAzlqgLXZSlyfF2d47L21ur41LAUc1Bzth2CmPVj2tODuorf-lSg60ZiIL3t0Lgv-5mJjUZKM244jO-CUqoIzXPMM8o2__QW_9ElxeT4FooJSVFDJT7_eUzl8fg-kfhwGq7oJVaVZ3waq6zPCbw_Ef0YcYM_BhD8RcclsTDnr-r_sLDjywxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791385878</pqid></control><display><type>article</type><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</creator><creatorcontrib>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</creatorcontrib><description>Glutamatergic signaling through
N
-methyl-
D
-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP
61
is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP
61
levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP
61
after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP
61
. STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP
61
levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP
61
and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP
61
accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP
61
inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/tp.2012.63</identifier><identifier>PMID: 22781170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/2388 ; 692/699/476/1799 ; Analysis of Variance ; Animals ; Antipsychotic Agents - pharmacology ; Antipsychotic Agents - therapeutic use ; Behavioral Sciences ; Biological Psychology ; Dizocilpine Maleate - pharmacology ; Gyrus Cinguli - drug effects ; Gyrus Cinguli - metabolism ; Humans ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurosciences ; Original ; original-article ; Pharmacotherapy ; Phencyclidine - pharmacology ; Phosphorylation - drug effects ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Protein Tyrosine Phosphatases, Non-Receptor - genetics ; Protein Tyrosine Phosphatases, Non-Receptor - metabolism ; Psychiatry ; Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors ; Receptors, N-Methyl-D-Aspartate - metabolism ; Schizophrenia - drug therapy ; Schizophrenia - etiology ; Schizophrenia - metabolism</subject><ispartof>Translational psychiatry, 2012-07, Vol.2 (7), p.e137-e137</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Jul 2012</rights><rights>Copyright © 2012 Macmillan Publishers Limited 2012 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</citedby><cites>FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22781170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carty, N C</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Kurup, P</creatorcontrib><creatorcontrib>Brouillette, J</creatorcontrib><creatorcontrib>Goebel-Goody, S M</creatorcontrib><creatorcontrib>Austin, D R</creatorcontrib><creatorcontrib>Yuan, P</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Correa, P R</creatorcontrib><creatorcontrib>Haroutunian, V</creatorcontrib><creatorcontrib>Pittenger, C</creatorcontrib><creatorcontrib>Lombroso, P J</creatorcontrib><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>Glutamatergic signaling through
N
-methyl-
D
-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP
61
is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP
61
levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP
61
after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP
61
. STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP
61
levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP
61
and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP
61
accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP
61
inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</description><subject>631/154/436/2388</subject><subject>692/699/476/1799</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Antipsychotic Agents - pharmacology</subject><subject>Antipsychotic Agents - therapeutic use</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>Gyrus Cinguli - drug effects</subject><subject>Gyrus Cinguli - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurosciences</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Phencyclidine - pharmacology</subject><subject>Phosphorylation - drug effects</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - genetics</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</subject><subject>Psychiatry</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Schizophrenia - drug therapy</subject><subject>Schizophrenia - etiology</subject><subject>Schizophrenia - metabolism</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkVFrFDEQxxdRbKl98QNIwBdR7sxks5usDwUpVQsFhV6fw2w2e5uym6xJVjjB727KteWqeUlgfvxmJv-ieA10DbSUH9O8ZhTYui6fFccMKrkqQcrnB--j4jTGW5pPxSUIeFkcMSYkgKDHxZ_NYEjaBR-tM2QefJwHTBgNud5c_PhE7DSPVmOy3kViHYl6sL_9PATjLBJ0HUlZMPnR6GXEQCajB3Q2TmRxnQnjzrptxpKd404PPlmdke7B-Kp40eMYzen9fVLcfLnYnH9bXX3_enn--WqlKyrTqkfW1l3X1MC7tpG0E1JUGsAYibo2fYMcTUWbvkLsS86ga6VAzlqgLXZSlyfF2d47L21ur41LAUc1Bzth2CmPVj2tODuorf-lSg60ZiIL3t0Lgv-5mJjUZKM244jO-CUqoIzXPMM8o2__QW_9ElxeT4FooJSVFDJT7_eUzl8fg-kfhwGq7oJVaVZ3waq6zPCbw_Ef0YcYM_BhD8RcclsTDnr-r_sLDjywxA</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Carty, N C</creator><creator>Xu, J</creator><creator>Kurup, P</creator><creator>Brouillette, J</creator><creator>Goebel-Goody, S M</creator><creator>Austin, D R</creator><creator>Yuan, P</creator><creator>Chen, G</creator><creator>Correa, P R</creator><creator>Haroutunian, V</creator><creator>Pittenger, C</creator><creator>Lombroso, P J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120710</creationdate><title>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</title><author>Carty, N C ; Xu, J ; Kurup, P ; Brouillette, J ; Goebel-Goody, S M ; Austin, D R ; Yuan, P ; Chen, G ; Correa, P R ; Haroutunian, V ; Pittenger, C ; Lombroso, P J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-fa2b6dd9614db980d7875c11ee8ac6ef9a4ae509f5aaf3421db87a42b10bad8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/154/436/2388</topic><topic>692/699/476/1799</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Antipsychotic Agents - pharmacology</topic><topic>Antipsychotic Agents - therapeutic use</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>Gyrus Cinguli - drug effects</topic><topic>Gyrus Cinguli - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurosciences</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Phencyclidine - pharmacology</topic><topic>Phosphorylation - drug effects</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - genetics</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</topic><topic>Psychiatry</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Schizophrenia - drug therapy</topic><topic>Schizophrenia - etiology</topic><topic>Schizophrenia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carty, N C</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Kurup, P</creatorcontrib><creatorcontrib>Brouillette, J</creatorcontrib><creatorcontrib>Goebel-Goody, S M</creatorcontrib><creatorcontrib>Austin, D R</creatorcontrib><creatorcontrib>Yuan, P</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Correa, P R</creatorcontrib><creatorcontrib>Haroutunian, V</creatorcontrib><creatorcontrib>Pittenger, C</creatorcontrib><creatorcontrib>Lombroso, P J</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carty, N C</au><au>Xu, J</au><au>Kurup, P</au><au>Brouillette, J</au><au>Goebel-Goody, S M</au><au>Austin, D R</au><au>Yuan, P</au><au>Chen, G</au><au>Correa, P R</au><au>Haroutunian, V</au><au>Pittenger, C</au><au>Lombroso, P J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>2</volume><issue>7</issue><spage>e137</spage><epage>e137</epage><pages>e137-e137</pages><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>Glutamatergic signaling through
N
-methyl-
D
-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP
61
is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP
61
levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP
61
after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP
61
. STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP
61
levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP
61
and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP
61
accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP
61
inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22781170</pmid><doi>10.1038/tp.2012.63</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3188 |
ispartof | Translational psychiatry, 2012-07, Vol.2 (7), p.e137-e137 |
issn | 2158-3188 2158-3188 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410627 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/154/436/2388 692/699/476/1799 Analysis of Variance Animals Antipsychotic Agents - pharmacology Antipsychotic Agents - therapeutic use Behavioral Sciences Biological Psychology Dizocilpine Maleate - pharmacology Gyrus Cinguli - drug effects Gyrus Cinguli - metabolism Humans Male Medicine Medicine & Public Health Mice Mice, Inbred C57BL Mice, Knockout Neurosciences Original original-article Pharmacotherapy Phencyclidine - pharmacology Phosphorylation - drug effects Prefrontal Cortex - drug effects Prefrontal Cortex - metabolism Protein Tyrosine Phosphatases, Non-Receptor - genetics Protein Tyrosine Phosphatases, Non-Receptor - metabolism Psychiatry Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors Receptors, N-Methyl-D-Aspartate - metabolism Schizophrenia - drug therapy Schizophrenia - etiology Schizophrenia - metabolism |
title | The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20tyrosine%20phosphatase%20STEP:%20implications%20in%20schizophrenia%20and%20the%20molecular%20mechanism%20underlying%20antipsychotic%20medications&rft.jtitle=Translational%20psychiatry&rft.au=Carty,%20N%20C&rft.date=2012-07-10&rft.volume=2&rft.issue=7&rft.spage=e137&rft.epage=e137&rft.pages=e137-e137&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/tp.2012.63&rft_dat=%3Cproquest_pubme%3E1024644104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791385878&rft_id=info:pmid/22781170&rfr_iscdi=true |