Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3
Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2012-08, Vol.13 (8), p.741-749 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 749 |
---|---|
container_issue | 8 |
container_start_page | 741 |
container_title | EMBO reports |
container_volume | 13 |
creator | Cadot, Bruno Gache, Vincent Vasyutina, Elena Falcone, Sestina Birchmeier, Carmen Gomes, Edgar R |
description | Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.
Mono‐nucleated myoblasts fuse to form multi‐nucleated myotubes. After the fusion, the myoblast nucleus moves towards the centre of the myotube. This movement is driven by microtubules and dynein, and is regulated by Cdc42, Par6 and Par3. |
doi_str_mv | 10.1038/embor.2012.89 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031158661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6389-fdc94777694cbbd04caeba48280c38e52d13aa377c450d73e493910a635e2ec13</originalsourceid><addsrcrecordid>eNp9kstvEzEQxlcIRB9w5IoscaESG_zatfeCVKLSIqUBlefN8tqT1O0-gr0b2P-edRKiUiFOHo1_883nGSfJM4InBDP5Guqy9ROKCZ3I4kFySHhepIwI-XAXU0q-HyRHIdxgjLNCyMfJAaWCUcnpYbKe96YC7VHdrqGGpkO2965Zonpou74EtGh9rTvXNsgFVDvjY7qvAOnGIjs04BpkYQWNjcUxOXIeln2lO7CoHNDUGk5foY_a55v7MWBPkkcLXQV4ujuPky_vzj5PL9LZh_P309NZanImi3RhTcGFEHnBTVlazI2GUnNJJTZMQkYtYVozIQzPsBUMeMEKgnXOMqBgCDtO3mx1V31ZgzWjR68rtfKu1n5QrXbq75vGXatlu1aMx-kWo8DJVuD6XtnF6UzFHGa5FJkQ69js5a6Zb3_0EDpVu2CgqnQDbR_UqEhIJvM8oi_uoTdt75txFJHCTGSU8JFKt9Q49RA8LPYOCI6cVJvtq7h9tTH7_O5r9_SfdY9AtgV-ugqG_6ups8u3VzHeCE-2dWEVPwf4u3b_7WTn3IUOfu0baX-rcjG-Tn2bn6uvRX41n19-UoT9Boa_2u8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030375214</pqid></control><display><type>article</type><title>Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Cadot, Bruno ; Gache, Vincent ; Vasyutina, Elena ; Falcone, Sestina ; Birchmeier, Carmen ; Gomes, Edgar R</creator><creatorcontrib>Cadot, Bruno ; Gache, Vincent ; Vasyutina, Elena ; Falcone, Sestina ; Birchmeier, Carmen ; Gomes, Edgar R</creatorcontrib><description>Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.
Mono‐nucleated myoblasts fuse to form multi‐nucleated myotubes. After the fusion, the myoblast nucleus moves towards the centre of the myotube. This movement is driven by microtubules and dynein, and is regulated by Cdc42, Par6 and Par3.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/embor.2012.89</identifier><identifier>PMID: 22732842</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Animals ; cdc42 GTP-Binding Protein - metabolism ; Cell adhesion & migration ; Cell Adhesion Molecules - metabolism ; Cell Fusion ; Cell Line ; Cell Nucleus - metabolism ; Cellular Biology ; Dynactin Complex ; dynein ; Dyneins - metabolism ; EMBO05 ; Life Sciences ; Mice ; Microtubule-Associated Proteins - metabolism ; microtubules ; Microtubules - metabolism ; Models, Biological ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - metabolism ; Myoblasts - cytology ; Myoblasts - metabolism ; Nuclear Envelope - metabolism ; nuclear movement ; Par6 ; Protein Transport ; Proteins ; Scientific Report ; Scientific Reports ; skeletal muscle</subject><ispartof>EMBO reports, 2012-08, Vol.13 (8), p.741-749</ispartof><rights>European Molecular Biology Organization 2012</rights><rights>Copyright © 2012 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6389-fdc94777694cbbd04caeba48280c38e52d13aa377c450d73e493910a635e2ec13</citedby><cites>FETCH-LOGICAL-c6389-fdc94777694cbbd04caeba48280c38e52d13aa377c450d73e493910a635e2ec13</cites><orcidid>0000-0002-2041-8872 ; 0000-0002-1888-3898 ; 0000-0002-2928-791X ; 0000-0002-3574-0602 ; 0000-0002-6941-4872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410389/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410389/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22732842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03687577$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cadot, Bruno</creatorcontrib><creatorcontrib>Gache, Vincent</creatorcontrib><creatorcontrib>Vasyutina, Elena</creatorcontrib><creatorcontrib>Falcone, Sestina</creatorcontrib><creatorcontrib>Birchmeier, Carmen</creatorcontrib><creatorcontrib>Gomes, Edgar R</creatorcontrib><title>Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.
Mono‐nucleated myoblasts fuse to form multi‐nucleated myotubes. After the fusion, the myoblast nucleus moves towards the centre of the myotube. This movement is driven by microtubules and dynein, and is regulated by Cdc42, Par6 and Par3.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular Biology</subject><subject>Dynactin Complex</subject><subject>dynein</subject><subject>Dyneins - metabolism</subject><subject>EMBO05</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Nuclear Envelope - metabolism</subject><subject>nuclear movement</subject><subject>Par6</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>skeletal muscle</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kstvEzEQxlcIRB9w5IoscaESG_zatfeCVKLSIqUBlefN8tqT1O0-gr0b2P-edRKiUiFOHo1_883nGSfJM4InBDP5Guqy9ROKCZ3I4kFySHhepIwI-XAXU0q-HyRHIdxgjLNCyMfJAaWCUcnpYbKe96YC7VHdrqGGpkO2965Zonpou74EtGh9rTvXNsgFVDvjY7qvAOnGIjs04BpkYQWNjcUxOXIeln2lO7CoHNDUGk5foY_a55v7MWBPkkcLXQV4ujuPky_vzj5PL9LZh_P309NZanImi3RhTcGFEHnBTVlazI2GUnNJJTZMQkYtYVozIQzPsBUMeMEKgnXOMqBgCDtO3mx1V31ZgzWjR68rtfKu1n5QrXbq75vGXatlu1aMx-kWo8DJVuD6XtnF6UzFHGa5FJkQ69js5a6Zb3_0EDpVu2CgqnQDbR_UqEhIJvM8oi_uoTdt75txFJHCTGSU8JFKt9Q49RA8LPYOCI6cVJvtq7h9tTH7_O5r9_SfdY9AtgV-ugqG_6ups8u3VzHeCE-2dWEVPwf4u3b_7WTn3IUOfu0baX-rcjG-Tn2bn6uvRX41n19-UoT9Boa_2u8</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Cadot, Bruno</creator><creator>Gache, Vincent</creator><creator>Vasyutina, Elena</creator><creator>Falcone, Sestina</creator><creator>Birchmeier, Carmen</creator><creator>Gomes, Edgar R</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>EMBO Press</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2041-8872</orcidid><orcidid>https://orcid.org/0000-0002-1888-3898</orcidid><orcidid>https://orcid.org/0000-0002-2928-791X</orcidid><orcidid>https://orcid.org/0000-0002-3574-0602</orcidid><orcidid>https://orcid.org/0000-0002-6941-4872</orcidid></search><sort><creationdate>201208</creationdate><title>Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3</title><author>Cadot, Bruno ; Gache, Vincent ; Vasyutina, Elena ; Falcone, Sestina ; Birchmeier, Carmen ; Gomes, Edgar R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6389-fdc94777694cbbd04caeba48280c38e52d13aa377c450d73e493910a635e2ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular Biology</topic><topic>Dynactin Complex</topic><topic>dynein</topic><topic>Dyneins - metabolism</topic><topic>EMBO05</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Nuclear Envelope - metabolism</topic><topic>nuclear movement</topic><topic>Par6</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadot, Bruno</creatorcontrib><creatorcontrib>Gache, Vincent</creatorcontrib><creatorcontrib>Vasyutina, Elena</creatorcontrib><creatorcontrib>Falcone, Sestina</creatorcontrib><creatorcontrib>Birchmeier, Carmen</creatorcontrib><creatorcontrib>Gomes, Edgar R</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadot, Bruno</au><au>Gache, Vincent</au><au>Vasyutina, Elena</au><au>Falcone, Sestina</au><au>Birchmeier, Carmen</au><au>Gomes, Edgar R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2012-08</date><risdate>2012</risdate><volume>13</volume><issue>8</issue><spage>741</spage><epage>749</epage><pages>741-749</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.
Mono‐nucleated myoblasts fuse to form multi‐nucleated myotubes. After the fusion, the myoblast nucleus moves towards the centre of the myotube. This movement is driven by microtubules and dynein, and is regulated by Cdc42, Par6 and Par3.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>22732842</pmid><doi>10.1038/embor.2012.89</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2041-8872</orcidid><orcidid>https://orcid.org/0000-0002-1888-3898</orcidid><orcidid>https://orcid.org/0000-0002-2928-791X</orcidid><orcidid>https://orcid.org/0000-0002-3574-0602</orcidid><orcidid>https://orcid.org/0000-0002-6941-4872</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2012-08, Vol.13 (8), p.741-749 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410389 |
source | MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - metabolism Animals cdc42 GTP-Binding Protein - metabolism Cell adhesion & migration Cell Adhesion Molecules - metabolism Cell Fusion Cell Line Cell Nucleus - metabolism Cellular Biology Dynactin Complex dynein Dyneins - metabolism EMBO05 Life Sciences Mice Microtubule-Associated Proteins - metabolism microtubules Microtubules - metabolism Models, Biological Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - metabolism Myoblasts - cytology Myoblasts - metabolism Nuclear Envelope - metabolism nuclear movement Par6 Protein Transport Proteins Scientific Report Scientific Reports skeletal muscle |
title | Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20movement%20during%20myotube%20formation%20is%20microtubule%20and%20dynein%20dependent%20and%20is%20regulated%20by%20Cdc42,%20Par6%20and%20Par3&rft.jtitle=EMBO%20reports&rft.au=Cadot,%20Bruno&rft.date=2012-08&rft.volume=13&rft.issue=8&rft.spage=741&rft.epage=749&rft.pages=741-749&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/embor.2012.89&rft_dat=%3Cproquest_pubme%3E1031158661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030375214&rft_id=info:pmid/22732842&rfr_iscdi=true |