CXCR4 gene transfer prevents pressure overload induced heart failure

Abstract Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2012-08, Vol.53 (2), p.223-232
Hauptverfasser: LaRocca, Thomas J, Jeong, Dongtak, Kohlbrenner, Erik, Lee, Ahyoung, Chen, JiQiu, Hajjar, Roger J, Tarzami, Sima T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 223
container_title Journal of molecular and cellular cardiology
container_volume 53
creator LaRocca, Thomas J
Jeong, Dongtak
Kohlbrenner, Erik
Lee, Ahyoung
Chen, JiQiu
Hajjar, Roger J
Tarzami, Sima T
description Abstract Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adrenoceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest that AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure.
doi_str_mv 10.1016/j.yjmcc.2012.05.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3409693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282812001939</els_id><sourcerecordid>1023292025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f6dec199cd6c27597b351dbb4b37fb4ef9dfdca568a0b4768e4d755eacf969063</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoMo7uzqLxCkl960nny1zYULMuoqLAh-gHchTU53UzvpmLQD8-9NnXVRb7xKyHnf9xyeHEKeUago0PrlUB2HnbUVA8oqkFV-e0A2FJQsW9mKh2QDwFjJWtaekfOUBgBQgvPH5Iyxum6bVm7Im-237SdR3GDAYo4mpB5jsY94wDCn9ZLSErGYDhjHybjCB7dYdMUtmjgXvfFjLj8hj3ozJnx6d16Qr-_eftm-L68_Xn3Yvr4uraRiLvvaoaVKWVdb1kjVdFxS13Wi403fCeyV6501sm4NdKKpWxSukRKN7VWtoOYX5PKUu1-6HTqbZ4xm1PvodyYe9WS8_rsS_K2-mQ6aC8gJPAe8uAuI048F06x3PlkcRxNwWpKmwDhTDJjMUn6S2jilFLG_b0NBr_z1oH_x1yt_DVLnt-x6_ueE957fwLPg1UmAmdPBY9TJegwZqY9oZ-0m_58Gl__47eiDt2b8jkdMw7TEkL9AU52yR39eV2DdAMoAqOKK_wRGx66B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023292025</pqid></control><display><type>article</type><title>CXCR4 gene transfer prevents pressure overload induced heart failure</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>LaRocca, Thomas J ; Jeong, Dongtak ; Kohlbrenner, Erik ; Lee, Ahyoung ; Chen, JiQiu ; Hajjar, Roger J ; Tarzami, Sima T</creator><creatorcontrib>LaRocca, Thomas J ; Jeong, Dongtak ; Kohlbrenner, Erik ; Lee, Ahyoung ; Chen, JiQiu ; Hajjar, Roger J ; Tarzami, Sima T</creatorcontrib><description>Abstract Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adrenoceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest that AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2012.05.016</identifier><identifier>PMID: 22668785</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adeno-associated virus ; Animals ; Blotting, Western ; Calcineurin - metabolism ; Calcium Channels, L-Type - metabolism ; Cardiac remodeling ; Cardiomegaly - genetics ; Cardiomegaly - metabolism ; Cardiovascular ; Chemokine CXCL12 - pharmacology ; Chemokines ; Enzyme-Linked Immunosorbent Assay ; Gene delivery ; Heart failure ; Heart Failure - genetics ; Heart Failure - metabolism ; Heart Failure - therapy ; Hemodynamics - drug effects ; Immunoprecipitation ; Isoproterenol - pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Rats ; Real-Time Polymerase Chain Reaction ; Receptors, Adrenergic, beta-3 - metabolism ; Receptors, CXCR4 - genetics ; Receptors, CXCR4 - metabolism</subject><ispartof>Journal of molecular and cellular cardiology, 2012-08, Vol.53 (2), p.223-232</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2012 Elsevier Ltd. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f6dec199cd6c27597b351dbb4b37fb4ef9dfdca568a0b4768e4d755eacf969063</citedby><cites>FETCH-LOGICAL-c514t-f6dec199cd6c27597b351dbb4b37fb4ef9dfdca568a0b4768e4d755eacf969063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yjmcc.2012.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22668785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaRocca, Thomas J</creatorcontrib><creatorcontrib>Jeong, Dongtak</creatorcontrib><creatorcontrib>Kohlbrenner, Erik</creatorcontrib><creatorcontrib>Lee, Ahyoung</creatorcontrib><creatorcontrib>Chen, JiQiu</creatorcontrib><creatorcontrib>Hajjar, Roger J</creatorcontrib><creatorcontrib>Tarzami, Sima T</creatorcontrib><title>CXCR4 gene transfer prevents pressure overload induced heart failure</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adrenoceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest that AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Calcineurin - metabolism</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cardiac remodeling</subject><subject>Cardiomegaly - genetics</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiovascular</subject><subject>Chemokine CXCL12 - pharmacology</subject><subject>Chemokines</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Gene delivery</subject><subject>Heart failure</subject><subject>Heart Failure - genetics</subject><subject>Heart Failure - metabolism</subject><subject>Heart Failure - therapy</subject><subject>Hemodynamics - drug effects</subject><subject>Immunoprecipitation</subject><subject>Isoproterenol - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Rats</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptors, Adrenergic, beta-3 - metabolism</subject><subject>Receptors, CXCR4 - genetics</subject><subject>Receptors, CXCR4 - metabolism</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2L1DAUhoMo7uzqLxCkl960nny1zYULMuoqLAh-gHchTU53UzvpmLQD8-9NnXVRb7xKyHnf9xyeHEKeUago0PrlUB2HnbUVA8oqkFV-e0A2FJQsW9mKh2QDwFjJWtaekfOUBgBQgvPH5Iyxum6bVm7Im-237SdR3GDAYo4mpB5jsY94wDCn9ZLSErGYDhjHybjCB7dYdMUtmjgXvfFjLj8hj3ozJnx6d16Qr-_eftm-L68_Xn3Yvr4uraRiLvvaoaVKWVdb1kjVdFxS13Wi403fCeyV6501sm4NdKKpWxSukRKN7VWtoOYX5PKUu1-6HTqbZ4xm1PvodyYe9WS8_rsS_K2-mQ6aC8gJPAe8uAuI048F06x3PlkcRxNwWpKmwDhTDJjMUn6S2jilFLG_b0NBr_z1oH_x1yt_DVLnt-x6_ueE957fwLPg1UmAmdPBY9TJegwZqY9oZ-0m_58Gl__47eiDt2b8jkdMw7TEkL9AU52yR39eV2DdAMoAqOKK_wRGx66B</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>LaRocca, Thomas J</creator><creator>Jeong, Dongtak</creator><creator>Kohlbrenner, Erik</creator><creator>Lee, Ahyoung</creator><creator>Chen, JiQiu</creator><creator>Hajjar, Roger J</creator><creator>Tarzami, Sima T</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>CXCR4 gene transfer prevents pressure overload induced heart failure</title><author>LaRocca, Thomas J ; Jeong, Dongtak ; Kohlbrenner, Erik ; Lee, Ahyoung ; Chen, JiQiu ; Hajjar, Roger J ; Tarzami, Sima T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f6dec199cd6c27597b351dbb4b37fb4ef9dfdca568a0b4768e4d755eacf969063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Calcineurin - metabolism</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cardiac remodeling</topic><topic>Cardiomegaly - genetics</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiovascular</topic><topic>Chemokine CXCL12 - pharmacology</topic><topic>Chemokines</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Gene delivery</topic><topic>Heart failure</topic><topic>Heart Failure - genetics</topic><topic>Heart Failure - metabolism</topic><topic>Heart Failure - therapy</topic><topic>Hemodynamics - drug effects</topic><topic>Immunoprecipitation</topic><topic>Isoproterenol - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Rats</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptors, Adrenergic, beta-3 - metabolism</topic><topic>Receptors, CXCR4 - genetics</topic><topic>Receptors, CXCR4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaRocca, Thomas J</creatorcontrib><creatorcontrib>Jeong, Dongtak</creatorcontrib><creatorcontrib>Kohlbrenner, Erik</creatorcontrib><creatorcontrib>Lee, Ahyoung</creatorcontrib><creatorcontrib>Chen, JiQiu</creatorcontrib><creatorcontrib>Hajjar, Roger J</creatorcontrib><creatorcontrib>Tarzami, Sima T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaRocca, Thomas J</au><au>Jeong, Dongtak</au><au>Kohlbrenner, Erik</au><au>Lee, Ahyoung</au><au>Chen, JiQiu</au><au>Hajjar, Roger J</au><au>Tarzami, Sima T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXCR4 gene transfer prevents pressure overload induced heart failure</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>53</volume><issue>2</issue><spage>223</spage><epage>232</epage><pages>223-232</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adrenoceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest that AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22668785</pmid><doi>10.1016/j.yjmcc.2012.05.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 2012-08, Vol.53 (2), p.223-232
issn 0022-2828
1095-8584
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3409693
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adeno-associated virus
Animals
Blotting, Western
Calcineurin - metabolism
Calcium Channels, L-Type - metabolism
Cardiac remodeling
Cardiomegaly - genetics
Cardiomegaly - metabolism
Cardiovascular
Chemokine CXCL12 - pharmacology
Chemokines
Enzyme-Linked Immunosorbent Assay
Gene delivery
Heart failure
Heart Failure - genetics
Heart Failure - metabolism
Heart Failure - therapy
Hemodynamics - drug effects
Immunoprecipitation
Isoproterenol - pharmacology
Male
Mice
Mice, Inbred C57BL
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Rats
Real-Time Polymerase Chain Reaction
Receptors, Adrenergic, beta-3 - metabolism
Receptors, CXCR4 - genetics
Receptors, CXCR4 - metabolism
title CXCR4 gene transfer prevents pressure overload induced heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXCR4%20gene%20transfer%20prevents%20pressure%20overload%20induced%20heart%20failure&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=LaRocca,%20Thomas%20J&rft.date=2012-08-01&rft.volume=53&rft.issue=2&rft.spage=223&rft.epage=232&rft.pages=223-232&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2012.05.016&rft_dat=%3Cproquest_pubme%3E1023292025%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023292025&rft_id=info:pmid/22668785&rft_els_id=S0022282812001939&rfr_iscdi=true