Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane

Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2012-08, Vol.23 (15), p.2917-2929
Hauptverfasser: Deutsch, Emily, Weigel, Aubrey V, Akin, Elizabeth J, Fox, Phil, Hansen, Gentry, Haberkorn, Christopher J, Loftus, Rob, Krapf, Diego, Tamkun, Michael M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2929
container_issue 15
container_start_page 2917
container_title Molecular biology of the cell
container_volume 23
creator Deutsch, Emily
Weigel, Aubrey V
Akin, Elizabeth J
Fox, Phil
Hansen, Gentry
Haberkorn, Christopher J
Loftus, Rob
Krapf, Diego
Tamkun, Michael M
description Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.
doi_str_mv 10.1091/mbc.E12-01-0047
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030505968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-d21b9dd1e9af84a3b26dfcad72334600d3bbb8aee0d747b582dbfa5970d6df533</originalsourceid><addsrcrecordid>eNpVkUlPxDAMhSMEYtjO3FCOXDrYSbpdkBBiE0hc4BxlcZmiLkPSjsS_pxUDgottxV-enTzGThGWCCVetNYtb1AkgAmAynfYAZayTFRaZLtTDWmZYCrUgh3G-A6ASmX5PlsIkakCczxg7nEjlsgdNQ2PY6iMI-6aMQ4UIjeBeN1FCkPdd3zdmKHqQxv5FPl84lam66jhnpp6Q-GTDz0fVjSTsTW8pdYG09Ex26tME-lkm4_Y6-3Ny_V98vR893B99ZS4FNIh8QJt6T1SaapCGWlF5itnfC6kVBmAl9bawhCBz1Vu00J4W5m0zMFPYCrlEbv81l2PtiXvqBuCafQ61K0Jn7o3tf7f6eqVfus3WiooFBaTwPlWIPQfI8VBt3Wcv2Z6RD9GjSBhWrXMZvTiG3WhjzFQ9TsGQc_W6MkaTSg0oJ6tmW6c_d3ul__xQn4BKg6Naw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030505968</pqid></control><display><type>article</type><title>Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Deutsch, Emily ; Weigel, Aubrey V ; Akin, Elizabeth J ; Fox, Phil ; Hansen, Gentry ; Haberkorn, Christopher J ; Loftus, Rob ; Krapf, Diego ; Tamkun, Michael M</creator><creatorcontrib>Deutsch, Emily ; Weigel, Aubrey V ; Akin, Elizabeth J ; Fox, Phil ; Hansen, Gentry ; Haberkorn, Christopher J ; Loftus, Rob ; Krapf, Diego ; Tamkun, Michael M</creatorcontrib><description>Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E12-01-0047</identifier><identifier>PMID: 22648171</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Cell Membrane - metabolism ; HEK293 Cells ; Humans ; Ion Channel Gating ; Kv1.4 Potassium Channel - metabolism ; Membrane Fusion - physiology ; Membrane Potentials ; Microscopy, Confocal ; Neurons - metabolism ; Shab Potassium Channels - metabolism ; SNARE Proteins - metabolism ; Surface Properties</subject><ispartof>Molecular biology of the cell, 2012-08, Vol.23 (15), p.2917-2929</ispartof><rights>2012 Deutsch This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-d21b9dd1e9af84a3b26dfcad72334600d3bbb8aee0d747b582dbfa5970d6df533</citedby><cites>FETCH-LOGICAL-c505t-d21b9dd1e9af84a3b26dfcad72334600d3bbb8aee0d747b582dbfa5970d6df533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408418/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408418/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22648171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deutsch, Emily</creatorcontrib><creatorcontrib>Weigel, Aubrey V</creatorcontrib><creatorcontrib>Akin, Elizabeth J</creatorcontrib><creatorcontrib>Fox, Phil</creatorcontrib><creatorcontrib>Hansen, Gentry</creatorcontrib><creatorcontrib>Haberkorn, Christopher J</creatorcontrib><creatorcontrib>Loftus, Rob</creatorcontrib><creatorcontrib>Krapf, Diego</creatorcontrib><creatorcontrib>Tamkun, Michael M</creatorcontrib><title>Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.</description><subject>Cell Membrane - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Kv1.4 Potassium Channel - metabolism</subject><subject>Membrane Fusion - physiology</subject><subject>Membrane Potentials</subject><subject>Microscopy, Confocal</subject><subject>Neurons - metabolism</subject><subject>Shab Potassium Channels - metabolism</subject><subject>SNARE Proteins - metabolism</subject><subject>Surface Properties</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUlPxDAMhSMEYtjO3FCOXDrYSbpdkBBiE0hc4BxlcZmiLkPSjsS_pxUDgottxV-enTzGThGWCCVetNYtb1AkgAmAynfYAZayTFRaZLtTDWmZYCrUgh3G-A6ASmX5PlsIkakCczxg7nEjlsgdNQ2PY6iMI-6aMQ4UIjeBeN1FCkPdd3zdmKHqQxv5FPl84lam66jhnpp6Q-GTDz0fVjSTsTW8pdYG09Ex26tME-lkm4_Y6-3Ny_V98vR893B99ZS4FNIh8QJt6T1SaapCGWlF5itnfC6kVBmAl9bawhCBz1Vu00J4W5m0zMFPYCrlEbv81l2PtiXvqBuCafQ61K0Jn7o3tf7f6eqVfus3WiooFBaTwPlWIPQfI8VBt3Wcv2Z6RD9GjSBhWrXMZvTiG3WhjzFQ9TsGQc_W6MkaTSg0oJ6tmW6c_d3ul__xQn4BKg6Naw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Deutsch, Emily</creator><creator>Weigel, Aubrey V</creator><creator>Akin, Elizabeth J</creator><creator>Fox, Phil</creator><creator>Hansen, Gentry</creator><creator>Haberkorn, Christopher J</creator><creator>Loftus, Rob</creator><creator>Krapf, Diego</creator><creator>Tamkun, Michael M</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201208</creationdate><title>Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane</title><author>Deutsch, Emily ; Weigel, Aubrey V ; Akin, Elizabeth J ; Fox, Phil ; Hansen, Gentry ; Haberkorn, Christopher J ; Loftus, Rob ; Krapf, Diego ; Tamkun, Michael M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-d21b9dd1e9af84a3b26dfcad72334600d3bbb8aee0d747b582dbfa5970d6df533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Membrane - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Kv1.4 Potassium Channel - metabolism</topic><topic>Membrane Fusion - physiology</topic><topic>Membrane Potentials</topic><topic>Microscopy, Confocal</topic><topic>Neurons - metabolism</topic><topic>Shab Potassium Channels - metabolism</topic><topic>SNARE Proteins - metabolism</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deutsch, Emily</creatorcontrib><creatorcontrib>Weigel, Aubrey V</creatorcontrib><creatorcontrib>Akin, Elizabeth J</creatorcontrib><creatorcontrib>Fox, Phil</creatorcontrib><creatorcontrib>Hansen, Gentry</creatorcontrib><creatorcontrib>Haberkorn, Christopher J</creatorcontrib><creatorcontrib>Loftus, Rob</creatorcontrib><creatorcontrib>Krapf, Diego</creatorcontrib><creatorcontrib>Tamkun, Michael M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deutsch, Emily</au><au>Weigel, Aubrey V</au><au>Akin, Elizabeth J</au><au>Fox, Phil</au><au>Hansen, Gentry</au><au>Haberkorn, Christopher J</au><au>Loftus, Rob</au><au>Krapf, Diego</au><au>Tamkun, Michael M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2012-08</date><risdate>2012</risdate><volume>23</volume><issue>15</issue><spage>2917</spage><epage>2929</epage><pages>2917-2929</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>22648171</pmid><doi>10.1091/mbc.E12-01-0047</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2012-08, Vol.23 (15), p.2917-2929
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408418
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Membrane - metabolism
HEK293 Cells
Humans
Ion Channel Gating
Kv1.4 Potassium Channel - metabolism
Membrane Fusion - physiology
Membrane Potentials
Microscopy, Confocal
Neurons - metabolism
Shab Potassium Channels - metabolism
SNARE Proteins - metabolism
Surface Properties
title Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kv2.1%20cell%20surface%20clusters%20are%20insertion%20platforms%20for%20ion%20channel%20delivery%20to%20the%20plasma%20membrane&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Deutsch,%20Emily&rft.date=2012-08&rft.volume=23&rft.issue=15&rft.spage=2917&rft.epage=2929&rft.pages=2917-2929&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E12-01-0047&rft_dat=%3Cproquest_pubme%3E1030505968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030505968&rft_id=info:pmid/22648171&rfr_iscdi=true