A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development

The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2012-06, Vol.24 (6), p.2352-2363
Hauptverfasser: Hannah, L. Curtis, Futch, Brandon, Bing, James, Shaw, Janine R., Boehlein, Susan, Stewart, Jon D., Beiriger, Robert, Georgelis, Nikolaos, Greene, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2363
container_issue 6
container_start_page 2352
container_title The Plant cell
container_volume 24
creator Hannah, L. Curtis
Futch, Brandon
Bing, James
Shaw, Janine R.
Boehlein, Susan
Stewart, Jon D.
Beiriger, Robert
Georgelis, Nikolaos
Greene, Thomas
description The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.
doi_str_mv 10.1105/tpc.112.100602
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23264462</jstor_id><sourcerecordid>23264462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxSMEYj_gyg1kicteUmbsOE4uSNXCwkqLONADnCzHmbQpqd21kxXlr8elS_m4cPKT5jfPM_Oy7BnCDBHkq3Frk-AzBCiBP8hOUQqe87r6_DBpKCAvSokn2VmMawBAhfXj7IRzJZGjOM2-zVlchcl9JZdztgjGxSU5YtfOBjKRIvtg-u_EvvQ0tKzZsbkde7dkvUuFkYIzA1v0MU6JHP2xjY0rYleBbidydsd8xz4RtewN3dHgtxty45PsUWeGSE_v3_NscfV2cfk-v_n47vpyfpPbQokxLytZi64WjWzbFtC2Da-gM01jRdfYugMyhldNJ2QrTaksV0pRU9nKGKzAivPs9cF2OzUbam36OZhBb0O_MWGnven13xXXr_TS32lRQFkjJoOLe4Pg0zZx1Js-WhoG48hPUfP9VVGilP9FEQQIiahUQl_-g679tD_mT6oooaqKveHsQNngYwzUHedG0Pv4dYo_Ca4P8aeGF39ue8R_5Z2A5wdgHUcfftcFL4ui5OIHTIW2TA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034608845</pqid></control><display><type>article</type><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</creator><creatorcontrib>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</creatorcontrib><description>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.112.100602</identifier><identifier>PMID: 22751213</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adenosine diphosphate ; Alleles ; Corn ; Crop yield ; Endosperm ; Flowers - genetics ; Gene Dosage ; Gene Expression Regulation, Plant ; Genotypes ; glucose-1-phosphate adenylyltransferase ; Glucose-1-Phosphate Adenylyltransferase - genetics ; Glucose-1-Phosphate Adenylyltransferase - metabolism ; heat stability ; High temperature ; Molecular Sequence Data ; Ovaries ; plant ovary ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Pollination ; probability ; seed development ; Seed weight ; Seeds ; Seeds - genetics ; Seeds - growth &amp; development ; Starches ; Temperature ; tissues ; Transgenes ; Wheat ; Zea mays - genetics ; Zea mays - growth &amp; development</subject><ispartof>The Plant cell, 2012-06, Vol.24 (6), p.2352-2363</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Jun 2012</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23264462$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23264462$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22751213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah, L. Curtis</creatorcontrib><creatorcontrib>Futch, Brandon</creatorcontrib><creatorcontrib>Bing, James</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Boehlein, Susan</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Beiriger, Robert</creatorcontrib><creatorcontrib>Georgelis, Nikolaos</creatorcontrib><creatorcontrib>Greene, Thomas</creatorcontrib><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</description><subject>Adenosine diphosphate</subject><subject>Alleles</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Endosperm</subject><subject>Flowers - genetics</subject><subject>Gene Dosage</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotypes</subject><subject>glucose-1-phosphate adenylyltransferase</subject><subject>Glucose-1-Phosphate Adenylyltransferase - genetics</subject><subject>Glucose-1-Phosphate Adenylyltransferase - metabolism</subject><subject>heat stability</subject><subject>High temperature</subject><subject>Molecular Sequence Data</subject><subject>Ovaries</subject><subject>plant ovary</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pollination</subject><subject>probability</subject><subject>seed development</subject><subject>Seed weight</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Starches</subject><subject>Temperature</subject><subject>tissues</subject><subject>Transgenes</subject><subject>Wheat</subject><subject>Zea mays - genetics</subject><subject>Zea mays - growth &amp; development</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc2P0zAQxSMEYj_gyg1kicteUmbsOE4uSNXCwkqLONADnCzHmbQpqd21kxXlr8elS_m4cPKT5jfPM_Oy7BnCDBHkq3Frk-AzBCiBP8hOUQqe87r6_DBpKCAvSokn2VmMawBAhfXj7IRzJZGjOM2-zVlchcl9JZdztgjGxSU5YtfOBjKRIvtg-u_EvvQ0tKzZsbkde7dkvUuFkYIzA1v0MU6JHP2xjY0rYleBbidydsd8xz4RtewN3dHgtxty45PsUWeGSE_v3_NscfV2cfk-v_n47vpyfpPbQokxLytZi64WjWzbFtC2Da-gM01jRdfYugMyhldNJ2QrTaksV0pRU9nKGKzAivPs9cF2OzUbam36OZhBb0O_MWGnven13xXXr_TS32lRQFkjJoOLe4Pg0zZx1Js-WhoG48hPUfP9VVGilP9FEQQIiahUQl_-g679tD_mT6oooaqKveHsQNngYwzUHedG0Pv4dYo_Ca4P8aeGF39ue8R_5Z2A5wdgHUcfftcFL4ui5OIHTIW2TA</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Hannah, L. Curtis</creator><creator>Futch, Brandon</creator><creator>Bing, James</creator><creator>Shaw, Janine R.</creator><creator>Boehlein, Susan</creator><creator>Stewart, Jon D.</creator><creator>Beiriger, Robert</creator><creator>Georgelis, Nikolaos</creator><creator>Greene, Thomas</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><author>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine diphosphate</topic><topic>Alleles</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Endosperm</topic><topic>Flowers - genetics</topic><topic>Gene Dosage</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotypes</topic><topic>glucose-1-phosphate adenylyltransferase</topic><topic>Glucose-1-Phosphate Adenylyltransferase - genetics</topic><topic>Glucose-1-Phosphate Adenylyltransferase - metabolism</topic><topic>heat stability</topic><topic>High temperature</topic><topic>Molecular Sequence Data</topic><topic>Ovaries</topic><topic>plant ovary</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pollination</topic><topic>probability</topic><topic>seed development</topic><topic>Seed weight</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Starches</topic><topic>Temperature</topic><topic>tissues</topic><topic>Transgenes</topic><topic>Wheat</topic><topic>Zea mays - genetics</topic><topic>Zea mays - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah, L. Curtis</creatorcontrib><creatorcontrib>Futch, Brandon</creatorcontrib><creatorcontrib>Bing, James</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Boehlein, Susan</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Beiriger, Robert</creatorcontrib><creatorcontrib>Georgelis, Nikolaos</creatorcontrib><creatorcontrib>Greene, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannah, L. Curtis</au><au>Futch, Brandon</au><au>Bing, James</au><au>Shaw, Janine R.</au><au>Boehlein, Susan</au><au>Stewart, Jon D.</au><au>Beiriger, Robert</au><au>Georgelis, Nikolaos</au><au>Greene, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>24</volume><issue>6</issue><spage>2352</spage><epage>2363</epage><pages>2352-2363</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>22751213</pmid><doi>10.1105/tpc.112.100602</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2012-06, Vol.24 (6), p.2352-2363
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406911
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine diphosphate
Alleles
Corn
Crop yield
Endosperm
Flowers - genetics
Gene Dosage
Gene Expression Regulation, Plant
Genotypes
glucose-1-phosphate adenylyltransferase
Glucose-1-Phosphate Adenylyltransferase - genetics
Glucose-1-Phosphate Adenylyltransferase - metabolism
heat stability
High temperature
Molecular Sequence Data
Ovaries
plant ovary
Plant Proteins - genetics
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Pollination
probability
seed development
Seed weight
Seeds
Seeds - genetics
Seeds - growth & development
Starches
Temperature
tissues
Transgenes
Wheat
Zea mays - genetics
Zea mays - growth & development
title A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shrunken-2%20Transgene%20Increases%20Maize%20Yield%20by%20Acting%20in%20Maternal%20Tissues%20to%20Increase%20the%20Frequency%20of%20Seed%20Development&rft.jtitle=The%20Plant%20cell&rft.au=Hannah,%20L.%20Curtis&rft.date=2012-06-01&rft.volume=24&rft.issue=6&rft.spage=2352&rft.epage=2363&rft.pages=2352-2363&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.112.100602&rft_dat=%3Cjstor_pubme%3E23264462%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034608845&rft_id=info:pmid/22751213&rft_jstor_id=23264462&rfr_iscdi=true