A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development
The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2012-06, Vol.24 (6), p.2352-2363 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2363 |
---|---|
container_issue | 6 |
container_start_page | 2352 |
container_title | The Plant cell |
container_volume | 24 |
creator | Hannah, L. Curtis Futch, Brandon Bing, James Shaw, Janine R. Boehlein, Susan Stewart, Jon D. Beiriger, Robert Georgelis, Nikolaos Greene, Thomas |
description | The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures. |
doi_str_mv | 10.1105/tpc.112.100602 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23264462</jstor_id><sourcerecordid>23264462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxSMEYj_gyg1kicteUmbsOE4uSNXCwkqLONADnCzHmbQpqd21kxXlr8elS_m4cPKT5jfPM_Oy7BnCDBHkq3Frk-AzBCiBP8hOUQqe87r6_DBpKCAvSokn2VmMawBAhfXj7IRzJZGjOM2-zVlchcl9JZdztgjGxSU5YtfOBjKRIvtg-u_EvvQ0tKzZsbkde7dkvUuFkYIzA1v0MU6JHP2xjY0rYleBbidydsd8xz4RtewN3dHgtxty45PsUWeGSE_v3_NscfV2cfk-v_n47vpyfpPbQokxLytZi64WjWzbFtC2Da-gM01jRdfYugMyhldNJ2QrTaksV0pRU9nKGKzAivPs9cF2OzUbam36OZhBb0O_MWGnven13xXXr_TS32lRQFkjJoOLe4Pg0zZx1Js-WhoG48hPUfP9VVGilP9FEQQIiahUQl_-g679tD_mT6oooaqKveHsQNngYwzUHedG0Pv4dYo_Ca4P8aeGF39ue8R_5Z2A5wdgHUcfftcFL4ui5OIHTIW2TA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034608845</pqid></control><display><type>article</type><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</creator><creatorcontrib>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</creatorcontrib><description>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.112.100602</identifier><identifier>PMID: 22751213</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adenosine diphosphate ; Alleles ; Corn ; Crop yield ; Endosperm ; Flowers - genetics ; Gene Dosage ; Gene Expression Regulation, Plant ; Genotypes ; glucose-1-phosphate adenylyltransferase ; Glucose-1-Phosphate Adenylyltransferase - genetics ; Glucose-1-Phosphate Adenylyltransferase - metabolism ; heat stability ; High temperature ; Molecular Sequence Data ; Ovaries ; plant ovary ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Pollination ; probability ; seed development ; Seed weight ; Seeds ; Seeds - genetics ; Seeds - growth & development ; Starches ; Temperature ; tissues ; Transgenes ; Wheat ; Zea mays - genetics ; Zea mays - growth & development</subject><ispartof>The Plant cell, 2012-06, Vol.24 (6), p.2352-2363</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Jun 2012</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23264462$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23264462$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22751213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah, L. Curtis</creatorcontrib><creatorcontrib>Futch, Brandon</creatorcontrib><creatorcontrib>Bing, James</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Boehlein, Susan</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Beiriger, Robert</creatorcontrib><creatorcontrib>Georgelis, Nikolaos</creatorcontrib><creatorcontrib>Greene, Thomas</creatorcontrib><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</description><subject>Adenosine diphosphate</subject><subject>Alleles</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Endosperm</subject><subject>Flowers - genetics</subject><subject>Gene Dosage</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotypes</subject><subject>glucose-1-phosphate adenylyltransferase</subject><subject>Glucose-1-Phosphate Adenylyltransferase - genetics</subject><subject>Glucose-1-Phosphate Adenylyltransferase - metabolism</subject><subject>heat stability</subject><subject>High temperature</subject><subject>Molecular Sequence Data</subject><subject>Ovaries</subject><subject>plant ovary</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pollination</subject><subject>probability</subject><subject>seed development</subject><subject>Seed weight</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Starches</subject><subject>Temperature</subject><subject>tissues</subject><subject>Transgenes</subject><subject>Wheat</subject><subject>Zea mays - genetics</subject><subject>Zea mays - growth & development</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc2P0zAQxSMEYj_gyg1kicteUmbsOE4uSNXCwkqLONADnCzHmbQpqd21kxXlr8elS_m4cPKT5jfPM_Oy7BnCDBHkq3Frk-AzBCiBP8hOUQqe87r6_DBpKCAvSokn2VmMawBAhfXj7IRzJZGjOM2-zVlchcl9JZdztgjGxSU5YtfOBjKRIvtg-u_EvvQ0tKzZsbkde7dkvUuFkYIzA1v0MU6JHP2xjY0rYleBbidydsd8xz4RtewN3dHgtxty45PsUWeGSE_v3_NscfV2cfk-v_n47vpyfpPbQokxLytZi64WjWzbFtC2Da-gM01jRdfYugMyhldNJ2QrTaksV0pRU9nKGKzAivPs9cF2OzUbam36OZhBb0O_MWGnven13xXXr_TS32lRQFkjJoOLe4Pg0zZx1Js-WhoG48hPUfP9VVGilP9FEQQIiahUQl_-g679tD_mT6oooaqKveHsQNngYwzUHedG0Pv4dYo_Ca4P8aeGF39ue8R_5Z2A5wdgHUcfftcFL4ui5OIHTIW2TA</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Hannah, L. Curtis</creator><creator>Futch, Brandon</creator><creator>Bing, James</creator><creator>Shaw, Janine R.</creator><creator>Boehlein, Susan</creator><creator>Stewart, Jon D.</creator><creator>Beiriger, Robert</creator><creator>Georgelis, Nikolaos</creator><creator>Greene, Thomas</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</title><author>Hannah, L. Curtis ; Futch, Brandon ; Bing, James ; Shaw, Janine R. ; Boehlein, Susan ; Stewart, Jon D. ; Beiriger, Robert ; Georgelis, Nikolaos ; Greene, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-68593f93b5ddd01cdb280fabbc3fbc9f0eaa28bf35d5a67c2777eb8c8aa180c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine diphosphate</topic><topic>Alleles</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Endosperm</topic><topic>Flowers - genetics</topic><topic>Gene Dosage</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotypes</topic><topic>glucose-1-phosphate adenylyltransferase</topic><topic>Glucose-1-Phosphate Adenylyltransferase - genetics</topic><topic>Glucose-1-Phosphate Adenylyltransferase - metabolism</topic><topic>heat stability</topic><topic>High temperature</topic><topic>Molecular Sequence Data</topic><topic>Ovaries</topic><topic>plant ovary</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pollination</topic><topic>probability</topic><topic>seed development</topic><topic>Seed weight</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Starches</topic><topic>Temperature</topic><topic>tissues</topic><topic>Transgenes</topic><topic>Wheat</topic><topic>Zea mays - genetics</topic><topic>Zea mays - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah, L. Curtis</creatorcontrib><creatorcontrib>Futch, Brandon</creatorcontrib><creatorcontrib>Bing, James</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Boehlein, Susan</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Beiriger, Robert</creatorcontrib><creatorcontrib>Georgelis, Nikolaos</creatorcontrib><creatorcontrib>Greene, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannah, L. Curtis</au><au>Futch, Brandon</au><au>Bing, James</au><au>Shaw, Janine R.</au><au>Boehlein, Susan</au><au>Stewart, Jon D.</au><au>Beiriger, Robert</au><au>Georgelis, Nikolaos</au><au>Greene, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>24</volume><issue>6</issue><spage>2352</spage><epage>2363</epage><pages>2352-2363</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>22751213</pmid><doi>10.1105/tpc.112.100602</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2012-06, Vol.24 (6), p.2352-2363 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406911 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine diphosphate Alleles Corn Crop yield Endosperm Flowers - genetics Gene Dosage Gene Expression Regulation, Plant Genotypes glucose-1-phosphate adenylyltransferase Glucose-1-Phosphate Adenylyltransferase - genetics Glucose-1-Phosphate Adenylyltransferase - metabolism heat stability High temperature Molecular Sequence Data Ovaries plant ovary Plant Proteins - genetics Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Pollination probability seed development Seed weight Seeds Seeds - genetics Seeds - growth & development Starches Temperature tissues Transgenes Wheat Zea mays - genetics Zea mays - growth & development |
title | A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shrunken-2%20Transgene%20Increases%20Maize%20Yield%20by%20Acting%20in%20Maternal%20Tissues%20to%20Increase%20the%20Frequency%20of%20Seed%20Development&rft.jtitle=The%20Plant%20cell&rft.au=Hannah,%20L.%20Curtis&rft.date=2012-06-01&rft.volume=24&rft.issue=6&rft.spage=2352&rft.epage=2363&rft.pages=2352-2363&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.112.100602&rft_dat=%3Cjstor_pubme%3E23264462%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034608845&rft_id=info:pmid/22751213&rft_jstor_id=23264462&rfr_iscdi=true |