Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3

Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2012-07, Vol.3 (7), p.e347-e347
Hauptverfasser: Hsieh, Y-J, Chien, K-Y, Lin, S-Y, Sabu, S, Hsu, R-M, Chi, L-M, Lyu, P-C, Yu, J-S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e347
container_issue 7
container_start_page e347
container_title Cell death & disease
container_volume 3
creator Hsieh, Y-J
Chien, K-Y
Lin, S-Y
Sabu, S
Hsu, R-M
Chi, L-M
Lyu, P-C
Yu, J-S
description Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D 3 A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D 3 A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D 3 A was seen in vitro . Mass spectrometry-based quantitative analysis for post-translational modifications using both 16 O/ 18 O- and 14 N/ 15 N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D 3 A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.
doi_str_mv 10.1038/cddis.2012.85
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790964965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-da05e74320d6419210c510dc69ee801d9c60c3083550bec7bc4ebf92fcce33443</originalsourceid><addsrcrecordid>eNptkc9rFDEUx4MottQevcqAFy-z5udMchGk2CoU9NCeQyZ5s5uyk4xJtthz__FmurVsxVySl_fh-96XL0LvCV4RzORn65zPK4oJXUnxCh1TzEnLpVSvD95H6DTnG1wPY5iK7i06orSXQjB2jO5_bWKJY_KhGXxwuSmxmVO0Js8mQ8saE1wzgfOmQG7mBXZ3wUzeNiWBKROE0pbk12tIsJBl42PwAZr4xztTavEo4YOxxd_uP-L4YsY79GY02wynT_cJuj7_dnX2vb38efHj7Otla7nsS-sMFtBzRrHrOFGUYCsIdrZTABITp2yHLcOSCYEHsP1gOQyjoqO1wBjn7AR92evOu6FasnX1ZLZ6Tn4y6U5H4_XLTvAbvY63mnHcCbkIfHoSSPH3DnLRk88WtlsTIO6yJr3CquOqExX9-A96E3cpVHuVkp3gUglSqXZP2RRzTjA-L0OwXhLWjwnrJWEtF9UPhw6e6b95VmC1B3JthZrJwdj_Kj4A8B61Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786548951</pqid></control><display><type>article</type><title>Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hsieh, Y-J ; Chien, K-Y ; Lin, S-Y ; Sabu, S ; Hsu, R-M ; Chi, L-M ; Lyu, P-C ; Yu, J-S</creator><creatorcontrib>Hsieh, Y-J ; Chien, K-Y ; Lin, S-Y ; Sabu, S ; Hsu, R-M ; Chi, L-M ; Lyu, P-C ; Yu, J-S</creatorcontrib><description>Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D 3 A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D 3 A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D 3 A was seen in vitro . Mass spectrometry-based quantitative analysis for post-translational modifications using both 16 O/ 18 O- and 14 N/ 15 N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D 3 A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2012.85</identifier><identifier>PMID: 22785533</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/82 ; 692/699/67/1059 ; Amino Acid Sequence ; Antibodies ; Apoptosis - drug effects ; Biochemistry ; Biomedical and Life Sciences ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Catalytic Domain ; Cell Biology ; Cell Culture ; Cell Line, Tumor ; Dihematoporphyrin Ether - pharmacology ; Dihematoporphyrin Ether - therapeutic use ; Humans ; Immunology ; Jurkat Cells ; Life Sciences ; Methionine - chemistry ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Nitrogen Isotopes - chemistry ; Original ; original-article ; Oxidation-Reduction ; Oxygen Isotopes - chemistry ; Photochemotherapy ; Photosensitizing Agents - pharmacology ; Photosensitizing Agents - therapeutic use ; Protein Binding ; Protein Processing, Post-Translational - drug effects ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Tandem Mass Spectrometry ; Ultraviolet Rays</subject><ispartof>Cell death &amp; disease, 2012-07, Vol.3 (7), p.e347-e347</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Jul 2012</rights><rights>Copyright © 2012 Macmillan Publishers Limited 2012 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-da05e74320d6419210c510dc69ee801d9c60c3083550bec7bc4ebf92fcce33443</citedby><cites>FETCH-LOGICAL-c487t-da05e74320d6419210c510dc69ee801d9c60c3083550bec7bc4ebf92fcce33443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406584/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406584/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22785533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Y-J</creatorcontrib><creatorcontrib>Chien, K-Y</creatorcontrib><creatorcontrib>Lin, S-Y</creatorcontrib><creatorcontrib>Sabu, S</creatorcontrib><creatorcontrib>Hsu, R-M</creatorcontrib><creatorcontrib>Chi, L-M</creatorcontrib><creatorcontrib>Lyu, P-C</creatorcontrib><creatorcontrib>Yu, J-S</creatorcontrib><title>Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D 3 A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D 3 A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D 3 A was seen in vitro . Mass spectrometry-based quantitative analysis for post-translational modifications using both 16 O/ 18 O- and 14 N/ 15 N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D 3 A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.</description><subject>631/80/82</subject><subject>692/699/67/1059</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Catalytic Domain</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Line, Tumor</subject><subject>Dihematoporphyrin Ether - pharmacology</subject><subject>Dihematoporphyrin Ether - therapeutic use</subject><subject>Humans</subject><subject>Immunology</subject><subject>Jurkat Cells</subject><subject>Life Sciences</subject><subject>Methionine - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Nitrogen Isotopes - chemistry</subject><subject>Original</subject><subject>original-article</subject><subject>Oxidation-Reduction</subject><subject>Oxygen Isotopes - chemistry</subject><subject>Photochemotherapy</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Photosensitizing Agents - therapeutic use</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Tandem Mass Spectrometry</subject><subject>Ultraviolet Rays</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9rFDEUx4MottQevcqAFy-z5udMchGk2CoU9NCeQyZ5s5uyk4xJtthz__FmurVsxVySl_fh-96XL0LvCV4RzORn65zPK4oJXUnxCh1TzEnLpVSvD95H6DTnG1wPY5iK7i06orSXQjB2jO5_bWKJY_KhGXxwuSmxmVO0Js8mQ8saE1wzgfOmQG7mBXZ3wUzeNiWBKROE0pbk12tIsJBl42PwAZr4xztTavEo4YOxxd_uP-L4YsY79GY02wynT_cJuj7_dnX2vb38efHj7Otla7nsS-sMFtBzRrHrOFGUYCsIdrZTABITp2yHLcOSCYEHsP1gOQyjoqO1wBjn7AR92evOu6FasnX1ZLZ6Tn4y6U5H4_XLTvAbvY63mnHcCbkIfHoSSPH3DnLRk88WtlsTIO6yJr3CquOqExX9-A96E3cpVHuVkp3gUglSqXZP2RRzTjA-L0OwXhLWjwnrJWEtF9UPhw6e6b95VmC1B3JthZrJwdj_Kj4A8B61Ig</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Hsieh, Y-J</creator><creator>Chien, K-Y</creator><creator>Lin, S-Y</creator><creator>Sabu, S</creator><creator>Hsu, R-M</creator><creator>Chi, L-M</creator><creator>Lyu, P-C</creator><creator>Yu, J-S</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TO</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3</title><author>Hsieh, Y-J ; Chien, K-Y ; Lin, S-Y ; Sabu, S ; Hsu, R-M ; Chi, L-M ; Lyu, P-C ; Yu, J-S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-da05e74320d6419210c510dc69ee801d9c60c3083550bec7bc4ebf92fcce33443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/80/82</topic><topic>692/699/67/1059</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Catalytic Domain</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Line, Tumor</topic><topic>Dihematoporphyrin Ether - pharmacology</topic><topic>Dihematoporphyrin Ether - therapeutic use</topic><topic>Humans</topic><topic>Immunology</topic><topic>Jurkat Cells</topic><topic>Life Sciences</topic><topic>Methionine - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Nitrogen Isotopes - chemistry</topic><topic>Original</topic><topic>original-article</topic><topic>Oxidation-Reduction</topic><topic>Oxygen Isotopes - chemistry</topic><topic>Photochemotherapy</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Photosensitizing Agents - therapeutic use</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Tandem Mass Spectrometry</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Y-J</creatorcontrib><creatorcontrib>Chien, K-Y</creatorcontrib><creatorcontrib>Lin, S-Y</creatorcontrib><creatorcontrib>Sabu, S</creatorcontrib><creatorcontrib>Hsu, R-M</creatorcontrib><creatorcontrib>Chi, L-M</creatorcontrib><creatorcontrib>Lyu, P-C</creatorcontrib><creatorcontrib>Yu, J-S</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Y-J</au><au>Chien, K-Y</au><au>Lin, S-Y</au><au>Sabu, S</au><au>Hsu, R-M</au><au>Chi, L-M</au><au>Lyu, P-C</au><au>Yu, J-S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>3</volume><issue>7</issue><spage>e347</spage><epage>e347</epage><pages>e347-e347</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D 3 A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D 3 A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D 3 A was seen in vitro . Mass spectrometry-based quantitative analysis for post-translational modifications using both 16 O/ 18 O- and 14 N/ 15 N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D 3 A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22785533</pmid><doi>10.1038/cddis.2012.85</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2012-07, Vol.3 (7), p.e347-e347
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406584
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/80/82
692/699/67/1059
Amino Acid Sequence
Antibodies
Apoptosis - drug effects
Biochemistry
Biomedical and Life Sciences
Caspase 3 - genetics
Caspase 3 - metabolism
Catalytic Domain
Cell Biology
Cell Culture
Cell Line, Tumor
Dihematoporphyrin Ether - pharmacology
Dihematoporphyrin Ether - therapeutic use
Humans
Immunology
Jurkat Cells
Life Sciences
Methionine - chemistry
Molecular Sequence Data
Mutagenesis, Site-Directed
Neoplasms - drug therapy
Neoplasms - metabolism
Nitrogen Isotopes - chemistry
Original
original-article
Oxidation-Reduction
Oxygen Isotopes - chemistry
Photochemotherapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
Protein Binding
Protein Processing, Post-Translational - drug effects
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Tandem Mass Spectrometry
Ultraviolet Rays
title Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photofrin%20binds%20to%20procaspase-3%20and%20mediates%20photodynamic%20treatment-triggered%20methionine%20oxidation%20and%20inactivation%20of%20procaspase-3&rft.jtitle=Cell%20death%20&%20disease&rft.au=Hsieh,%20Y-J&rft.date=2012-07-01&rft.volume=3&rft.issue=7&rft.spage=e347&rft.epage=e347&rft.pages=e347-e347&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2012.85&rft_dat=%3Cproquest_pubme%3E1790964965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786548951&rft_id=info:pmid/22785533&rfr_iscdi=true