Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome

A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2011-08, Vol.30 (33), p.3585-3598
Hauptverfasser: Pal, J, Bertheau, R, Buon, L, Qazi, A, Batchu, R B, Bandyopadhyay, S, Ali-Fehmi, R, Beer, D G, Weaver, D W, Shmookler Reis, R J, Goyal, R K, Huang, Q, Munshi, N C, Shammas, M A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3598
container_issue 33
container_start_page 3585
container_title Oncogene
container_volume 30
creator Pal, J
Bertheau, R
Buon, L
Qazi, A
Batchu, R B
Bandyopadhyay, S
Ali-Fehmi, R
Beer, D G
Weaver, D W
Shmookler Reis, R J
Goyal, R K
Huang, Q
Munshi, N C
Shammas, M A
description A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity ( P
doi_str_mv 10.1038/onc.2011.83
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A266563739</galeid><sourcerecordid>A266563739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-f4e36af0cab06168c7fde8e832b0f837679076b20780621b380eef3180a74ab93</originalsourceid><addsrcrecordid>eNp9kl9r1EAUxYMotlaffJdBkQp21_m3k4kPwlq1CgVB9HmYTG52pyQz7Uyy4MfwG3vjrl0rVfIQmPu7595zOUXxmNE5o0K_isHNOWVsrsWd4pDJUs0Wi0reLQ5ptaCzigt-UDzI-YJSWlaU3y8OOJP4yvRh8eMMQuy9I7CJ3Tj4GIgP5K1NCYbhOBPbYN3Z5DxiljjouvyauOQH72xHUuwgk9gS6GBjB2jIOn9ZvluwE7KOfeziKo6ZJHCxr32wv_RtaMiyG0mGqxGCw36cOKyBrKZV4GFxr7Vdhke7_1Hx7cP7r6cfZ-efzz6dLs9nTlE-zFoJQtmWOltTxZR2ZduABi14TVstSoVWS1VzWmqqOKuFpgCtYJraUtq6EkfFm63u5Vj30DgIQ7KduUy-t-m7idabm5Xg12YVN0ZIFKwEChzvBFJEJ3kwvc_TgWwAdG20lpJzLadRL_5LMkoRXiihEX36F3oRxxTwEKinGVrXDKFn_4K4kkzSkjGxp1a2A-NDG9GGmyabJVcKx5Vi2m1-C4VfAxiLGKD1-H6j4eW2waWYc4L2-mSMmimQBgNppkAaPS3x5M8rX7O_E4jA8x1gMyaqTTY4n_eclKoSXCJ3suUylsIK0t7zbXN_AiJk9lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641407113</pqid></control><display><type>article</type><title>Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pal, J ; Bertheau, R ; Buon, L ; Qazi, A ; Batchu, R B ; Bandyopadhyay, S ; Ali-Fehmi, R ; Beer, D G ; Weaver, D W ; Shmookler Reis, R J ; Goyal, R K ; Huang, Q ; Munshi, N C ; Shammas, M A</creator><creatorcontrib>Pal, J ; Bertheau, R ; Buon, L ; Qazi, A ; Batchu, R B ; Bandyopadhyay, S ; Ali-Fehmi, R ; Beer, D G ; Weaver, D W ; Shmookler Reis, R J ; Goyal, R K ; Huang, Q ; Munshi, N C ; Shammas, M A</creatorcontrib><description>A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity ( P &lt;0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro , as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2011.83</identifier><identifier>PMID: 21423218</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/212/2304 ; 631/337/1427/2190 ; 692/699/67/1504/1477 ; Adenocarcinoma ; Adenocarcinoma - genetics ; Alu Elements ; Apoptosis ; Bacterial artificial chromosomes ; Barrett Esophagus - genetics ; Biological and medical sciences ; Cancer ; Cell Biology ; Cell Line, Tumor ; Cell physiology ; Cell proliferation ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cellular biology ; Chromosomes ; Copy number ; Diverse techniques ; DNA ; Esophageal Neoplasms - genetics ; Esophagus ; Evolution ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Genetic aspects ; Genetic recombination ; Genic rearrangement. Recombination. Transposable element ; Genome, Human ; Genomes ; Genomic instability ; Genomics ; Head &amp; neck cancer ; Heterozygosity ; Homologous recombination ; Human Genetics ; Humans ; Hybridization ; Hybridization analysis ; Internal Medicine ; Loss of Heterozygosity ; Medicine ; Medicine &amp; Public Health ; Molecular and cellular biology ; Molecular genetics ; Mutation ; Oncology ; original-article ; Rad51 Recombinase - physiology ; Recombinase ; Recombination, Genetic ; Risk factors ; RNA ; Single-nucleotide polymorphism</subject><ispartof>Oncogene, 2011-08, Vol.30 (33), p.3585-3598</ispartof><rights>Macmillan Publishers Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2011.</rights><rights>Copyright Nature Publishing Group Aug 18, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-f4e36af0cab06168c7fde8e832b0f837679076b20780621b380eef3180a74ab93</citedby><cites>FETCH-LOGICAL-c602t-f4e36af0cab06168c7fde8e832b0f837679076b20780621b380eef3180a74ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2011.83$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2011.83$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24469324$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21423218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, J</creatorcontrib><creatorcontrib>Bertheau, R</creatorcontrib><creatorcontrib>Buon, L</creatorcontrib><creatorcontrib>Qazi, A</creatorcontrib><creatorcontrib>Batchu, R B</creatorcontrib><creatorcontrib>Bandyopadhyay, S</creatorcontrib><creatorcontrib>Ali-Fehmi, R</creatorcontrib><creatorcontrib>Beer, D G</creatorcontrib><creatorcontrib>Weaver, D W</creatorcontrib><creatorcontrib>Shmookler Reis, R J</creatorcontrib><creatorcontrib>Goyal, R K</creatorcontrib><creatorcontrib>Huang, Q</creatorcontrib><creatorcontrib>Munshi, N C</creatorcontrib><creatorcontrib>Shammas, M A</creatorcontrib><title>Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity ( P &lt;0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro , as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.</description><subject>631/208/212/2304</subject><subject>631/337/1427/2190</subject><subject>692/699/67/1504/1477</subject><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - genetics</subject><subject>Alu Elements</subject><subject>Apoptosis</subject><subject>Bacterial artificial chromosomes</subject><subject>Barrett Esophagus - genetics</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell physiology</subject><subject>Cell proliferation</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cellular biology</subject><subject>Chromosomes</subject><subject>Copy number</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>Esophageal Neoplasms - genetics</subject><subject>Esophagus</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genomics</subject><subject>Head &amp; neck cancer</subject><subject>Heterozygosity</subject><subject>Homologous recombination</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Hybridization analysis</subject><subject>Internal Medicine</subject><subject>Loss of Heterozygosity</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>Oncology</subject><subject>original-article</subject><subject>Rad51 Recombinase - physiology</subject><subject>Recombinase</subject><subject>Recombination, Genetic</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Single-nucleotide polymorphism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl9r1EAUxYMotlaffJdBkQp21_m3k4kPwlq1CgVB9HmYTG52pyQz7Uyy4MfwG3vjrl0rVfIQmPu7595zOUXxmNE5o0K_isHNOWVsrsWd4pDJUs0Wi0reLQ5ptaCzigt-UDzI-YJSWlaU3y8OOJP4yvRh8eMMQuy9I7CJ3Tj4GIgP5K1NCYbhOBPbYN3Z5DxiljjouvyauOQH72xHUuwgk9gS6GBjB2jIOn9ZvluwE7KOfeziKo6ZJHCxr32wv_RtaMiyG0mGqxGCw36cOKyBrKZV4GFxr7Vdhke7_1Hx7cP7r6cfZ-efzz6dLs9nTlE-zFoJQtmWOltTxZR2ZduABi14TVstSoVWS1VzWmqqOKuFpgCtYJraUtq6EkfFm63u5Vj30DgIQ7KduUy-t-m7idabm5Xg12YVN0ZIFKwEChzvBFJEJ3kwvc_TgWwAdG20lpJzLadRL_5LMkoRXiihEX36F3oRxxTwEKinGVrXDKFn_4K4kkzSkjGxp1a2A-NDG9GGmyabJVcKx5Vi2m1-C4VfAxiLGKD1-H6j4eW2waWYc4L2-mSMmimQBgNppkAaPS3x5M8rX7O_E4jA8x1gMyaqTTY4n_eclKoSXCJ3suUylsIK0t7zbXN_AiJk9lg</recordid><startdate>20110818</startdate><enddate>20110818</enddate><creator>Pal, J</creator><creator>Bertheau, R</creator><creator>Buon, L</creator><creator>Qazi, A</creator><creator>Batchu, R B</creator><creator>Bandyopadhyay, S</creator><creator>Ali-Fehmi, R</creator><creator>Beer, D G</creator><creator>Weaver, D W</creator><creator>Shmookler Reis, R J</creator><creator>Goyal, R K</creator><creator>Huang, Q</creator><creator>Munshi, N C</creator><creator>Shammas, M A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110818</creationdate><title>Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome</title><author>Pal, J ; Bertheau, R ; Buon, L ; Qazi, A ; Batchu, R B ; Bandyopadhyay, S ; Ali-Fehmi, R ; Beer, D G ; Weaver, D W ; Shmookler Reis, R J ; Goyal, R K ; Huang, Q ; Munshi, N C ; Shammas, M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-f4e36af0cab06168c7fde8e832b0f837679076b20780621b380eef3180a74ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/208/212/2304</topic><topic>631/337/1427/2190</topic><topic>692/699/67/1504/1477</topic><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - genetics</topic><topic>Alu Elements</topic><topic>Apoptosis</topic><topic>Bacterial artificial chromosomes</topic><topic>Barrett Esophagus - genetics</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell physiology</topic><topic>Cell proliferation</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cellular biology</topic><topic>Chromosomes</topic><topic>Copy number</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>Esophageal Neoplasms - genetics</topic><topic>Esophagus</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genomics</topic><topic>Head &amp; neck cancer</topic><topic>Heterozygosity</topic><topic>Homologous recombination</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Hybridization analysis</topic><topic>Internal Medicine</topic><topic>Loss of Heterozygosity</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>Oncology</topic><topic>original-article</topic><topic>Rad51 Recombinase - physiology</topic><topic>Recombinase</topic><topic>Recombination, Genetic</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, J</creatorcontrib><creatorcontrib>Bertheau, R</creatorcontrib><creatorcontrib>Buon, L</creatorcontrib><creatorcontrib>Qazi, A</creatorcontrib><creatorcontrib>Batchu, R B</creatorcontrib><creatorcontrib>Bandyopadhyay, S</creatorcontrib><creatorcontrib>Ali-Fehmi, R</creatorcontrib><creatorcontrib>Beer, D G</creatorcontrib><creatorcontrib>Weaver, D W</creatorcontrib><creatorcontrib>Shmookler Reis, R J</creatorcontrib><creatorcontrib>Goyal, R K</creatorcontrib><creatorcontrib>Huang, Q</creatorcontrib><creatorcontrib>Munshi, N C</creatorcontrib><creatorcontrib>Shammas, M A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, J</au><au>Bertheau, R</au><au>Buon, L</au><au>Qazi, A</au><au>Batchu, R B</au><au>Bandyopadhyay, S</au><au>Ali-Fehmi, R</au><au>Beer, D G</au><au>Weaver, D W</au><au>Shmookler Reis, R J</au><au>Goyal, R K</au><au>Huang, Q</au><au>Munshi, N C</au><au>Shammas, M A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2011-08-18</date><risdate>2011</risdate><volume>30</volume><issue>33</issue><spage>3585</spage><epage>3598</epage><pages>3585-3598</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity ( P &lt;0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro , as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21423218</pmid><doi>10.1038/onc.2011.83</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2011-08, Vol.30 (33), p.3585-3598
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3406293
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects 631/208/212/2304
631/337/1427/2190
692/699/67/1504/1477
Adenocarcinoma
Adenocarcinoma - genetics
Alu Elements
Apoptosis
Bacterial artificial chromosomes
Barrett Esophagus - genetics
Biological and medical sciences
Cancer
Cell Biology
Cell Line, Tumor
Cell physiology
Cell proliferation
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cellular biology
Chromosomes
Copy number
Diverse techniques
DNA
Esophageal Neoplasms - genetics
Esophagus
Evolution
Fundamental and applied biological sciences. Psychology
Gene expression
Genetic aspects
Genetic recombination
Genic rearrangement. Recombination. Transposable element
Genome, Human
Genomes
Genomic instability
Genomics
Head & neck cancer
Heterozygosity
Homologous recombination
Human Genetics
Humans
Hybridization
Hybridization analysis
Internal Medicine
Loss of Heterozygosity
Medicine
Medicine & Public Health
Molecular and cellular biology
Molecular genetics
Mutation
Oncology
original-article
Rad51 Recombinase - physiology
Recombinase
Recombination, Genetic
Risk factors
RNA
Single-nucleotide polymorphism
title Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20evolution%20in%20Barrett's%20adenocarcinoma%20cells:%20critical%20roles%20of%20elevated%20hsRAD51,%20homologous%20recombination%20and%20Alu%20sequences%20in%20the%20genome&rft.jtitle=Oncogene&rft.au=Pal,%20J&rft.date=2011-08-18&rft.volume=30&rft.issue=33&rft.spage=3585&rft.epage=3598&rft.pages=3585-3598&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2011.83&rft_dat=%3Cgale_pubme%3EA266563739%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641407113&rft_id=info:pmid/21423218&rft_galeid=A266563739&rfr_iscdi=true