Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control
The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previou...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2012-07, Vol.159 (3), p.1235-1251 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1251 |
---|---|
container_issue | 3 |
container_start_page | 1235 |
container_title | Plant physiology (Bethesda) |
container_volume | 159 |
creator | Chen, Zhong-Hua Hills, Adrian Bätz, Ulrike Amtmann, Anna Lew, Virgilio L. Blatt, Michael R. |
description | The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis. |
doi_str_mv | 10.1104/pp.112.197350 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3404696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41549936</jstor_id><sourcerecordid>41549936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCkSPIF6QemuLvxJdKsJSCVATSFq6W4zi7rhI72E6lFf88Xu2ywInTG2l-8zQzD4AXGF1ijNibaSpKLrGsKUePwAJzSirCWfMYLBAqNWoaeQJOU7pHCGGK2VNwQoigvIwtwM_VNmU7Jvh-6_XoDPwcOjs4v4ahh3lj4SqHUWc9wJtZxw4u7TDAr9F2zuQEr0cb19Zn-M5u9IMLMUHn4V3UPk0h5gu4cmuvd3YXUPsOfg_DPFq4DD7HMDwDT3o9JPv8oGfg24fru-XH6vbLzafl29vKsJrkqm17gVsiRaeNkA2ldYclozWVllvatAZb0ogGSSRqUnNDO11rQlHDpG37mtAzcLX3neZ2tJ0pC0c9qCm6UcetCtqpfzvebdQ6PCjKEBNSFIPzg0EMP2abshpdMuUT2tswJ0V2n2Wccv5fFCNCieQ1QQWt9qiJIaVo--NGGKldtmqaihK1z7bwr_4-40j_DrMArw-ATkYPfYnBuPSHE5ixhuDCvdxz9ymHeOwzzJmUVNBfTp-2ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023295720</pqid></control><display><type>article</type><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</creator><creatorcontrib>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</creatorcontrib><description>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.197350</identifier><identifier>PMID: 22635112</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Adenosine triphosphatases ; Anions ; Biological and medical sciences ; Biological Transport ; calcium ; Calcium Signaling ; CELL BIOLOGY AND SIGNAL TRANSDUCTION ; Cell Membrane - metabolism ; Cell membranes ; chlorides ; Chlorides - metabolism ; Circadian Rhythm - physiology ; computer software ; Cytosol ; dynamic models ; Electric potential ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Guard cells ; homeostasis ; Hydrogen-Ion Concentration ; Intracellular Membranes - metabolism ; malates ; Malates - metabolism ; mathematical models ; Modeling ; Models, Biological ; Osmosis ; photosynthesis ; Plant cells ; Plant physiology and development ; Plant Stomata - cytology ; Plant Stomata - physiology ; potassium ; Potassium - metabolism ; prediction ; Proton-Translocating ATPases - metabolism ; Protons ; Signal Transduction ; stomatal movement ; Sucrose - metabolism ; systems analysis ; Systems Biology ; Tonoplast ; Vacuoles ; Vacuoles - metabolism</subject><ispartof>Plant physiology (Bethesda), 2012-07, Vol.159 (3), p.1235-1251</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</citedby><cites>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41549936$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41549936$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26144821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22635112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Bätz, Ulrike</creatorcontrib><creatorcontrib>Amtmann, Anna</creatorcontrib><creatorcontrib>Lew, Virgilio L.</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</description><subject>Adenosine triphosphatases</subject><subject>Anions</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>calcium</subject><subject>Calcium Signaling</subject><subject>CELL BIOLOGY AND SIGNAL TRANSDUCTION</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>chlorides</subject><subject>Chlorides - metabolism</subject><subject>Circadian Rhythm - physiology</subject><subject>computer software</subject><subject>Cytosol</subject><subject>dynamic models</subject><subject>Electric potential</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guard cells</subject><subject>homeostasis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Intracellular Membranes - metabolism</subject><subject>malates</subject><subject>Malates - metabolism</subject><subject>mathematical models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Osmosis</subject><subject>photosynthesis</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plant Stomata - cytology</subject><subject>Plant Stomata - physiology</subject><subject>potassium</subject><subject>Potassium - metabolism</subject><subject>prediction</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Protons</subject><subject>Signal Transduction</subject><subject>stomatal movement</subject><subject>Sucrose - metabolism</subject><subject>systems analysis</subject><subject>Systems Biology</subject><subject>Tonoplast</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotvCkSPIF6QemuLvxJdKsJSCVATSFq6W4zi7rhI72E6lFf88Xu2ywInTG2l-8zQzD4AXGF1ijNibaSpKLrGsKUePwAJzSirCWfMYLBAqNWoaeQJOU7pHCGGK2VNwQoigvIwtwM_VNmU7Jvh-6_XoDPwcOjs4v4ahh3lj4SqHUWc9wJtZxw4u7TDAr9F2zuQEr0cb19Zn-M5u9IMLMUHn4V3UPk0h5gu4cmuvd3YXUPsOfg_DPFq4DD7HMDwDT3o9JPv8oGfg24fru-XH6vbLzafl29vKsJrkqm17gVsiRaeNkA2ldYclozWVllvatAZb0ogGSSRqUnNDO11rQlHDpG37mtAzcLX3neZ2tJ0pC0c9qCm6UcetCtqpfzvebdQ6PCjKEBNSFIPzg0EMP2abshpdMuUT2tswJ0V2n2Wccv5fFCNCieQ1QQWt9qiJIaVo--NGGKldtmqaihK1z7bwr_4-40j_DrMArw-ATkYPfYnBuPSHE5ixhuDCvdxz9ymHeOwzzJmUVNBfTp-2ZA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chen, Zhong-Hua</creator><creator>Hills, Adrian</creator><creator>Bätz, Ulrike</creator><creator>Amtmann, Anna</creator><creator>Lew, Virgilio L.</creator><creator>Blatt, Michael R.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><author>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine triphosphatases</topic><topic>Anions</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>calcium</topic><topic>Calcium Signaling</topic><topic>CELL BIOLOGY AND SIGNAL TRANSDUCTION</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>chlorides</topic><topic>Chlorides - metabolism</topic><topic>Circadian Rhythm - physiology</topic><topic>computer software</topic><topic>Cytosol</topic><topic>dynamic models</topic><topic>Electric potential</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guard cells</topic><topic>homeostasis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Intracellular Membranes - metabolism</topic><topic>malates</topic><topic>Malates - metabolism</topic><topic>mathematical models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Osmosis</topic><topic>photosynthesis</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plant Stomata - cytology</topic><topic>Plant Stomata - physiology</topic><topic>potassium</topic><topic>Potassium - metabolism</topic><topic>prediction</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Protons</topic><topic>Signal Transduction</topic><topic>stomatal movement</topic><topic>Sucrose - metabolism</topic><topic>systems analysis</topic><topic>Systems Biology</topic><topic>Tonoplast</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Bätz, Ulrike</creatorcontrib><creatorcontrib>Amtmann, Anna</creatorcontrib><creatorcontrib>Lew, Virgilio L.</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Hua</au><au>Hills, Adrian</au><au>Bätz, Ulrike</au><au>Amtmann, Anna</au><au>Lew, Virgilio L.</au><au>Blatt, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>159</volume><issue>3</issue><spage>1235</spage><epage>1251</epage><pages>1235-1251</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22635112</pmid><doi>10.1104/pp.112.197350</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-07, Vol.159 (3), p.1235-1251 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3404696 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine triphosphatases Anions Biological and medical sciences Biological Transport calcium Calcium Signaling CELL BIOLOGY AND SIGNAL TRANSDUCTION Cell Membrane - metabolism Cell membranes chlorides Chlorides - metabolism Circadian Rhythm - physiology computer software Cytosol dynamic models Electric potential Energy Metabolism Fundamental and applied biological sciences. Psychology Guard cells homeostasis Hydrogen-Ion Concentration Intracellular Membranes - metabolism malates Malates - metabolism mathematical models Modeling Models, Biological Osmosis photosynthesis Plant cells Plant physiology and development Plant Stomata - cytology Plant Stomata - physiology potassium Potassium - metabolism prediction Proton-Translocating ATPases - metabolism Protons Signal Transduction stomatal movement Sucrose - metabolism systems analysis Systems Biology Tonoplast Vacuoles Vacuoles - metabolism |
title | Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20Dynamic%20Modeling%20of%20the%20Stomatal%20Guard%20Cell%20Predicts%20Emergent%20Behaviors%20in%20Transport,%20Signaling,%20and%20Volume%20Control&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Chen,%20Zhong-Hua&rft.date=2012-07-01&rft.volume=159&rft.issue=3&rft.spage=1235&rft.epage=1251&rft.pages=1235-1251&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.197350&rft_dat=%3Cjstor_pubme%3E41549936%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023295720&rft_id=info:pmid/22635112&rft_jstor_id=41549936&rfr_iscdi=true |