Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control

The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-07, Vol.159 (3), p.1235-1251
Hauptverfasser: Chen, Zhong-Hua, Hills, Adrian, Bätz, Ulrike, Amtmann, Anna, Lew, Virgilio L., Blatt, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1251
container_issue 3
container_start_page 1235
container_title Plant physiology (Bethesda)
container_volume 159
creator Chen, Zhong-Hua
Hills, Adrian
Bätz, Ulrike
Amtmann, Anna
Lew, Virgilio L.
Blatt, Michael R.
description The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.
doi_str_mv 10.1104/pp.112.197350
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3404696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41549936</jstor_id><sourcerecordid>41549936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCkSPIF6QemuLvxJdKsJSCVATSFq6W4zi7rhI72E6lFf88Xu2ywInTG2l-8zQzD4AXGF1ijNibaSpKLrGsKUePwAJzSirCWfMYLBAqNWoaeQJOU7pHCGGK2VNwQoigvIwtwM_VNmU7Jvh-6_XoDPwcOjs4v4ahh3lj4SqHUWc9wJtZxw4u7TDAr9F2zuQEr0cb19Zn-M5u9IMLMUHn4V3UPk0h5gu4cmuvd3YXUPsOfg_DPFq4DD7HMDwDT3o9JPv8oGfg24fru-XH6vbLzafl29vKsJrkqm17gVsiRaeNkA2ldYclozWVllvatAZb0ogGSSRqUnNDO11rQlHDpG37mtAzcLX3neZ2tJ0pC0c9qCm6UcetCtqpfzvebdQ6PCjKEBNSFIPzg0EMP2abshpdMuUT2tswJ0V2n2Wccv5fFCNCieQ1QQWt9qiJIaVo--NGGKldtmqaihK1z7bwr_4-40j_DrMArw-ATkYPfYnBuPSHE5ixhuDCvdxz9ymHeOwzzJmUVNBfTp-2ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023295720</pqid></control><display><type>article</type><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</creator><creatorcontrib>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</creatorcontrib><description>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.197350</identifier><identifier>PMID: 22635112</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Adenosine triphosphatases ; Anions ; Biological and medical sciences ; Biological Transport ; calcium ; Calcium Signaling ; CELL BIOLOGY AND SIGNAL TRANSDUCTION ; Cell Membrane - metabolism ; Cell membranes ; chlorides ; Chlorides - metabolism ; Circadian Rhythm - physiology ; computer software ; Cytosol ; dynamic models ; Electric potential ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; Guard cells ; homeostasis ; Hydrogen-Ion Concentration ; Intracellular Membranes - metabolism ; malates ; Malates - metabolism ; mathematical models ; Modeling ; Models, Biological ; Osmosis ; photosynthesis ; Plant cells ; Plant physiology and development ; Plant Stomata - cytology ; Plant Stomata - physiology ; potassium ; Potassium - metabolism ; prediction ; Proton-Translocating ATPases - metabolism ; Protons ; Signal Transduction ; stomatal movement ; Sucrose - metabolism ; systems analysis ; Systems Biology ; Tonoplast ; Vacuoles ; Vacuoles - metabolism</subject><ispartof>Plant physiology (Bethesda), 2012-07, Vol.159 (3), p.1235-1251</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</citedby><cites>FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41549936$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41549936$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26144821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22635112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Bätz, Ulrike</creatorcontrib><creatorcontrib>Amtmann, Anna</creatorcontrib><creatorcontrib>Lew, Virgilio L.</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</description><subject>Adenosine triphosphatases</subject><subject>Anions</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>calcium</subject><subject>Calcium Signaling</subject><subject>CELL BIOLOGY AND SIGNAL TRANSDUCTION</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>chlorides</subject><subject>Chlorides - metabolism</subject><subject>Circadian Rhythm - physiology</subject><subject>computer software</subject><subject>Cytosol</subject><subject>dynamic models</subject><subject>Electric potential</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guard cells</subject><subject>homeostasis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Intracellular Membranes - metabolism</subject><subject>malates</subject><subject>Malates - metabolism</subject><subject>mathematical models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Osmosis</subject><subject>photosynthesis</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plant Stomata - cytology</subject><subject>Plant Stomata - physiology</subject><subject>potassium</subject><subject>Potassium - metabolism</subject><subject>prediction</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Protons</subject><subject>Signal Transduction</subject><subject>stomatal movement</subject><subject>Sucrose - metabolism</subject><subject>systems analysis</subject><subject>Systems Biology</subject><subject>Tonoplast</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotvCkSPIF6QemuLvxJdKsJSCVATSFq6W4zi7rhI72E6lFf88Xu2ywInTG2l-8zQzD4AXGF1ijNibaSpKLrGsKUePwAJzSirCWfMYLBAqNWoaeQJOU7pHCGGK2VNwQoigvIwtwM_VNmU7Jvh-6_XoDPwcOjs4v4ahh3lj4SqHUWc9wJtZxw4u7TDAr9F2zuQEr0cb19Zn-M5u9IMLMUHn4V3UPk0h5gu4cmuvd3YXUPsOfg_DPFq4DD7HMDwDT3o9JPv8oGfg24fru-XH6vbLzafl29vKsJrkqm17gVsiRaeNkA2ldYclozWVllvatAZb0ogGSSRqUnNDO11rQlHDpG37mtAzcLX3neZ2tJ0pC0c9qCm6UcetCtqpfzvebdQ6PCjKEBNSFIPzg0EMP2abshpdMuUT2tswJ0V2n2Wccv5fFCNCieQ1QQWt9qiJIaVo--NGGKldtmqaihK1z7bwr_4-40j_DrMArw-ATkYPfYnBuPSHE5ixhuDCvdxz9ymHeOwzzJmUVNBfTp-2ZA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chen, Zhong-Hua</creator><creator>Hills, Adrian</creator><creator>Bätz, Ulrike</creator><creator>Amtmann, Anna</creator><creator>Lew, Virgilio L.</creator><creator>Blatt, Michael R.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</title><author>Chen, Zhong-Hua ; Hills, Adrian ; Bätz, Ulrike ; Amtmann, Anna ; Lew, Virgilio L. ; Blatt, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-bbf61b296dac698337d1943739e5e38bc1e286809067275c3da7a230849ebf723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine triphosphatases</topic><topic>Anions</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>calcium</topic><topic>Calcium Signaling</topic><topic>CELL BIOLOGY AND SIGNAL TRANSDUCTION</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>chlorides</topic><topic>Chlorides - metabolism</topic><topic>Circadian Rhythm - physiology</topic><topic>computer software</topic><topic>Cytosol</topic><topic>dynamic models</topic><topic>Electric potential</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guard cells</topic><topic>homeostasis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Intracellular Membranes - metabolism</topic><topic>malates</topic><topic>Malates - metabolism</topic><topic>mathematical models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Osmosis</topic><topic>photosynthesis</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plant Stomata - cytology</topic><topic>Plant Stomata - physiology</topic><topic>potassium</topic><topic>Potassium - metabolism</topic><topic>prediction</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Protons</topic><topic>Signal Transduction</topic><topic>stomatal movement</topic><topic>Sucrose - metabolism</topic><topic>systems analysis</topic><topic>Systems Biology</topic><topic>Tonoplast</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Bätz, Ulrike</creatorcontrib><creatorcontrib>Amtmann, Anna</creatorcontrib><creatorcontrib>Lew, Virgilio L.</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Hua</au><au>Hills, Adrian</au><au>Bätz, Ulrike</au><au>Amtmann, Anna</au><au>Lew, Virgilio L.</au><au>Blatt, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>159</volume><issue>3</issue><spage>1235</spage><epage>1251</epage><pages>1235-1251</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mai) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mai concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mai, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22635112</pmid><doi>10.1104/pp.112.197350</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-07, Vol.159 (3), p.1235-1251
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3404696
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine triphosphatases
Anions
Biological and medical sciences
Biological Transport
calcium
Calcium Signaling
CELL BIOLOGY AND SIGNAL TRANSDUCTION
Cell Membrane - metabolism
Cell membranes
chlorides
Chlorides - metabolism
Circadian Rhythm - physiology
computer software
Cytosol
dynamic models
Electric potential
Energy Metabolism
Fundamental and applied biological sciences. Psychology
Guard cells
homeostasis
Hydrogen-Ion Concentration
Intracellular Membranes - metabolism
malates
Malates - metabolism
mathematical models
Modeling
Models, Biological
Osmosis
photosynthesis
Plant cells
Plant physiology and development
Plant Stomata - cytology
Plant Stomata - physiology
potassium
Potassium - metabolism
prediction
Proton-Translocating ATPases - metabolism
Protons
Signal Transduction
stomatal movement
Sucrose - metabolism
systems analysis
Systems Biology
Tonoplast
Vacuoles
Vacuoles - metabolism
title Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20Dynamic%20Modeling%20of%20the%20Stomatal%20Guard%20Cell%20Predicts%20Emergent%20Behaviors%20in%20Transport,%20Signaling,%20and%20Volume%20Control&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Chen,%20Zhong-Hua&rft.date=2012-07-01&rft.volume=159&rft.issue=3&rft.spage=1235&rft.epage=1251&rft.pages=1235-1251&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.197350&rft_dat=%3Cjstor_pubme%3E41549936%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023295720&rft_id=info:pmid/22635112&rft_jstor_id=41549936&rfr_iscdi=true