Robust design and optimization of retroaldol enzymes

Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water‐mediated stabilization of the carbinolamine hydroxyl and β‐hydroxyl groups. Here, we show that the design process is robust and repeatable,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2012-05, Vol.21 (5), p.717-726
Hauptverfasser: Althoff, Eric A., Wang, Ling, Jiang, Lin, Giger, Lars, Lassila, Jonathan K., Wang, Zhizhi, Smith, Matthew, Hari, Sanjay, Kast, Peter, Herschlag, Daniel, Hilvert, Donald, Baker, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 5
container_start_page 717
container_title Protein science
container_volume 21
creator Althoff, Eric A.
Wang, Ling
Jiang, Lin
Giger, Lars
Lassila, Jonathan K.
Wang, Zhizhi
Smith, Matthew
Hari, Sanjay
Kast, Peter
Herschlag, Daniel
Hilvert, Donald
Baker, David
description Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water‐mediated stabilization of the carbinolamine hydroxyl and β‐hydroxyl groups. Here, we show that the design process is robust and repeatable, with 33 new active designs constructed on 13 different protein scaffold backbones. The initial activities are not high but are increased through site‐directed mutagenesis and laboratory evolution. Mutational data highlight areas for improvement in design. Different designed catalysts give different borohydride‐reduced reaction intermediates, suggesting a distribution of properties of the designed enzymes that may be further explored and exploited.
doi_str_mv 10.1002/pro.2059
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958280981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5039-cccde4d45d25f5e7e2c3fff18be09b8c299cb53f073738292f469d6aa86e615c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk7BXyAFb7zpzFfT5EaQ4RcMJkPBu5Cmyexom5q0yvbr7dwUvfDqcDgPz3l5AThFcIwgxJeNd2MME7EHhogyEXPBXvbBEAqGYk4YH4CjEJYQQoowOQQDjClMOUmHgM5d1oU2yk0oFnWk6jxyTVtUxVq1hasjZyNvWu9UmbsyMvV6VZlwDA6sKoM52c0ReL69eZrcx9PZ3cPkehrrBBIRa61zQ3Oa5DixiUkN1sRai3hmoMi4xkLoLCEWpiQlHAts--w5U4ozw1CiyQhcbb1Nl1Um16ZuvSpl44tK-ZV0qpB_L3XxKhfuXRIKSe_qBec7gXdvnQmtXLrO131miVLGOEWC0J662FLauxC8sT8fEJSbfvvdyU2_PXr2O9EP-F1oD8Rb4KMozepfkXycz76En9bBhZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766841934</pqid></control><display><type>article</type><title>Robust design and optimization of retroaldol enzymes</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Althoff, Eric A. ; Wang, Ling ; Jiang, Lin ; Giger, Lars ; Lassila, Jonathan K. ; Wang, Zhizhi ; Smith, Matthew ; Hari, Sanjay ; Kast, Peter ; Herschlag, Daniel ; Hilvert, Donald ; Baker, David</creator><creatorcontrib>Althoff, Eric A. ; Wang, Ling ; Jiang, Lin ; Giger, Lars ; Lassila, Jonathan K. ; Wang, Zhizhi ; Smith, Matthew ; Hari, Sanjay ; Kast, Peter ; Herschlag, Daniel ; Hilvert, Donald ; Baker, David</creatorcontrib><description>Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water‐mediated stabilization of the carbinolamine hydroxyl and β‐hydroxyl groups. Here, we show that the design process is robust and repeatable, with 33 new active designs constructed on 13 different protein scaffold backbones. The initial activities are not high but are increased through site‐directed mutagenesis and laboratory evolution. Mutational data highlight areas for improvement in design. Different designed catalysts give different borohydride‐reduced reaction intermediates, suggesting a distribution of properties of the designed enzymes that may be further explored and exploited.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2059</identifier><identifier>PMID: 22407837</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aldehyde-Lyases - chemistry ; Aldehyde-Lyases - genetics ; Aldehyde-Lyases - metabolism ; aldolase ; Catalytic Domain ; computational enzyme design ; computational protein design ; Design ; directed evolution ; Directed Molecular Evolution - methods ; enzyme ; enzyme engineering ; Enzymes ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Engineering - methods ; rational design ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>Protein science, 2012-05, Vol.21 (5), p.717-726</ispartof><rights>Copyright © 2012 The Protein Society</rights><rights>Copyright © 2012 The Protein Society.</rights><rights>Copyright © 2012 The Protein Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5039-cccde4d45d25f5e7e2c3fff18be09b8c299cb53f073738292f469d6aa86e615c3</citedby><cites>FETCH-LOGICAL-c5039-cccde4d45d25f5e7e2c3fff18be09b8c299cb53f073738292f469d6aa86e615c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403469/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403469/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22407837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Althoff, Eric A.</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Giger, Lars</creatorcontrib><creatorcontrib>Lassila, Jonathan K.</creatorcontrib><creatorcontrib>Wang, Zhizhi</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>Hari, Sanjay</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Hilvert, Donald</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>Robust design and optimization of retroaldol enzymes</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water‐mediated stabilization of the carbinolamine hydroxyl and β‐hydroxyl groups. Here, we show that the design process is robust and repeatable, with 33 new active designs constructed on 13 different protein scaffold backbones. The initial activities are not high but are increased through site‐directed mutagenesis and laboratory evolution. Mutational data highlight areas for improvement in design. Different designed catalysts give different borohydride‐reduced reaction intermediates, suggesting a distribution of properties of the designed enzymes that may be further explored and exploited.</description><subject>Aldehyde-Lyases - chemistry</subject><subject>Aldehyde-Lyases - genetics</subject><subject>Aldehyde-Lyases - metabolism</subject><subject>aldolase</subject><subject>Catalytic Domain</subject><subject>computational enzyme design</subject><subject>computational protein design</subject><subject>Design</subject><subject>directed evolution</subject><subject>Directed Molecular Evolution - methods</subject><subject>enzyme</subject><subject>enzyme engineering</subject><subject>Enzymes</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Engineering - methods</subject><subject>rational design</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk7BXyAFb7zpzFfT5EaQ4RcMJkPBu5Cmyexom5q0yvbr7dwUvfDqcDgPz3l5AThFcIwgxJeNd2MME7EHhogyEXPBXvbBEAqGYk4YH4CjEJYQQoowOQQDjClMOUmHgM5d1oU2yk0oFnWk6jxyTVtUxVq1hasjZyNvWu9UmbsyMvV6VZlwDA6sKoM52c0ReL69eZrcx9PZ3cPkehrrBBIRa61zQ3Oa5DixiUkN1sRai3hmoMi4xkLoLCEWpiQlHAts--w5U4ozw1CiyQhcbb1Nl1Um16ZuvSpl44tK-ZV0qpB_L3XxKhfuXRIKSe_qBec7gXdvnQmtXLrO131miVLGOEWC0J662FLauxC8sT8fEJSbfvvdyU2_PXr2O9EP-F1oD8Rb4KMozepfkXycz76En9bBhZE</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Althoff, Eric A.</creator><creator>Wang, Ling</creator><creator>Jiang, Lin</creator><creator>Giger, Lars</creator><creator>Lassila, Jonathan K.</creator><creator>Wang, Zhizhi</creator><creator>Smith, Matthew</creator><creator>Hari, Sanjay</creator><creator>Kast, Peter</creator><creator>Herschlag, Daniel</creator><creator>Hilvert, Donald</creator><creator>Baker, David</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201205</creationdate><title>Robust design and optimization of retroaldol enzymes</title><author>Althoff, Eric A. ; Wang, Ling ; Jiang, Lin ; Giger, Lars ; Lassila, Jonathan K. ; Wang, Zhizhi ; Smith, Matthew ; Hari, Sanjay ; Kast, Peter ; Herschlag, Daniel ; Hilvert, Donald ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5039-cccde4d45d25f5e7e2c3fff18be09b8c299cb53f073738292f469d6aa86e615c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aldehyde-Lyases - chemistry</topic><topic>Aldehyde-Lyases - genetics</topic><topic>Aldehyde-Lyases - metabolism</topic><topic>aldolase</topic><topic>Catalytic Domain</topic><topic>computational enzyme design</topic><topic>computational protein design</topic><topic>Design</topic><topic>directed evolution</topic><topic>Directed Molecular Evolution - methods</topic><topic>enzyme</topic><topic>enzyme engineering</topic><topic>Enzymes</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Engineering - methods</topic><topic>rational design</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Althoff, Eric A.</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Giger, Lars</creatorcontrib><creatorcontrib>Lassila, Jonathan K.</creatorcontrib><creatorcontrib>Wang, Zhizhi</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>Hari, Sanjay</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Hilvert, Donald</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Althoff, Eric A.</au><au>Wang, Ling</au><au>Jiang, Lin</au><au>Giger, Lars</au><au>Lassila, Jonathan K.</au><au>Wang, Zhizhi</au><au>Smith, Matthew</au><au>Hari, Sanjay</au><au>Kast, Peter</au><au>Herschlag, Daniel</au><au>Hilvert, Donald</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust design and optimization of retroaldol enzymes</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2012-05</date><risdate>2012</risdate><volume>21</volume><issue>5</issue><spage>717</spage><epage>726</epage><pages>717-726</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water‐mediated stabilization of the carbinolamine hydroxyl and β‐hydroxyl groups. Here, we show that the design process is robust and repeatable, with 33 new active designs constructed on 13 different protein scaffold backbones. The initial activities are not high but are increased through site‐directed mutagenesis and laboratory evolution. Mutational data highlight areas for improvement in design. Different designed catalysts give different borohydride‐reduced reaction intermediates, suggesting a distribution of properties of the designed enzymes that may be further explored and exploited.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22407837</pmid><doi>10.1002/pro.2059</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2012-05, Vol.21 (5), p.717-726
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403469
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aldehyde-Lyases - chemistry
Aldehyde-Lyases - genetics
Aldehyde-Lyases - metabolism
aldolase
Catalytic Domain
computational enzyme design
computational protein design
Design
directed evolution
Directed Molecular Evolution - methods
enzyme
enzyme engineering
Enzymes
Models, Molecular
Mutagenesis, Site-Directed
Protein Engineering - methods
rational design
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
title Robust design and optimization of retroaldol enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20design%20and%20optimization%20of%20retroaldol%20enzymes&rft.jtitle=Protein%20science&rft.au=Althoff,%20Eric%20A.&rft.date=2012-05&rft.volume=21&rft.issue=5&rft.spage=717&rft.epage=726&rft.pages=717-726&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2059&rft_dat=%3Cproquest_pubme%3E3958280981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766841934&rft_id=info:pmid/22407837&rfr_iscdi=true