CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set

High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2012-07, Vol.72 (14), p.3499-3511
Hauptverfasser: REINHOLD, William C, SUNSHINE, Margot, HONGFANG LIU, VARMA, Sudhir, KOHN, Kurt W, MORRIS, Joel, DOROSHOW, James, POMMIER, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3511
container_issue 14
container_start_page 3499
container_title Cancer research (Chicago, Ill.)
container_volume 72
creator REINHOLD, William C
SUNSHINE, Margot
HONGFANG LIU
VARMA, Sudhir
KOHN, Kurt W
MORRIS, Joel
DOROSHOW, James
POMMIER, Yves
description High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the U.S. National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacologic response platforms. In this report, we introduce a CellMiner (http://discover.nci.nih.gov/cellminer/) web application designed to improve the use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,379 genes and 360 microRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the U.S. Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross-comparisons using a novel pattern match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs, and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.
doi_str_mv 10.1158/0008-5472.can-12-1370
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3399763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1026863055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-248896868f8d2a90c46137eb1c0885d6ac2fe5bb09222b4f9ad431cd35fe5643</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EotvCTwD5gsTFxR9x4nBAWtLSVlpKpa7E0XIcZ9cosbe2g-DMH8dpt1s4WZ55Zt6ZeQF4Q_ApIVx8wBgLxIuKnmrlEKGIsAo_AwvCmUBVUfDnYHFgjsBxjD_ylxPMX4IjSgWmuKoW4E9jhuGrdSZ8hEv43bTos4qmg7eTTQb6Hl4Y50eroXIdvNmqMCrtB7_JkbX3Q4TJw_Nfu8EHA9dBuaiD3aV7-ixMG3ijUjLBRWgdTFsDr5srVGI4q8JVloW3Jr0CL3o1RPN6_56A9ZfzdXOJVt8urprlCmnO64RoIURdilL0oqOqxroo886mJRoLwbtSadob3ra4ppS2RV-rrmBEd4zncFmwE_Dpoe1uakfTaeNSUIPcBTuq8Ft6ZeX_GWe3cuN_SsbquipZbvB-3yD4u8nEJEcbdd5EOeOnKAmmeTyGOc8of0B18DEG0x9kCJazf3L2Rs7eyGZ5LQmVs3-57u2_Mx6qHg3LwLs9oKJWQ59Prm184vJJaMUL9hdWOKNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026863055</pqid></control><display><type>article</type><title>CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>REINHOLD, William C ; SUNSHINE, Margot ; HONGFANG LIU ; VARMA, Sudhir ; KOHN, Kurt W ; MORRIS, Joel ; DOROSHOW, James ; POMMIER, Yves</creator><creatorcontrib>REINHOLD, William C ; SUNSHINE, Margot ; HONGFANG LIU ; VARMA, Sudhir ; KOHN, Kurt W ; MORRIS, Joel ; DOROSHOW, James ; POMMIER, Yves</creatorcontrib><description>High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the U.S. National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacologic response platforms. In this report, we introduce a CellMiner (http://discover.nci.nih.gov/cellminer/) web application designed to improve the use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,379 genes and 360 microRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the U.S. Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross-comparisons using a novel pattern match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs, and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-12-1370</identifier><identifier>PMID: 22802077</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Antineoplastic agents ; Antineoplastic Agents - therapeutic use ; Biological and medical sciences ; Computational Biology ; Databases, Factual ; Drug Evaluation ; Gene Expression ; Genomics ; Humans ; Information Storage and Retrieval ; Internet ; Medical sciences ; Microarray Analysis ; MicroRNAs ; National Cancer Institute (U.S.) ; Pharmacology. Drug treatments ; RNA ; Tumors ; United States</subject><ispartof>Cancer research (Chicago, Ill.), 2012-07, Vol.72 (14), p.3499-3511</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-248896868f8d2a90c46137eb1c0885d6ac2fe5bb09222b4f9ad431cd35fe5643</citedby><cites>FETCH-LOGICAL-c559t-248896868f8d2a90c46137eb1c0885d6ac2fe5bb09222b4f9ad431cd35fe5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26132754$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22802077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>REINHOLD, William C</creatorcontrib><creatorcontrib>SUNSHINE, Margot</creatorcontrib><creatorcontrib>HONGFANG LIU</creatorcontrib><creatorcontrib>VARMA, Sudhir</creatorcontrib><creatorcontrib>KOHN, Kurt W</creatorcontrib><creatorcontrib>MORRIS, Joel</creatorcontrib><creatorcontrib>DOROSHOW, James</creatorcontrib><creatorcontrib>POMMIER, Yves</creatorcontrib><title>CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the U.S. National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacologic response platforms. In this report, we introduce a CellMiner (http://discover.nci.nih.gov/cellminer/) web application designed to improve the use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,379 genes and 360 microRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the U.S. Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross-comparisons using a novel pattern match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs, and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.</description><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Computational Biology</subject><subject>Databases, Factual</subject><subject>Drug Evaluation</subject><subject>Gene Expression</subject><subject>Genomics</subject><subject>Humans</subject><subject>Information Storage and Retrieval</subject><subject>Internet</subject><subject>Medical sciences</subject><subject>Microarray Analysis</subject><subject>MicroRNAs</subject><subject>National Cancer Institute (U.S.)</subject><subject>Pharmacology. Drug treatments</subject><subject>RNA</subject><subject>Tumors</subject><subject>United States</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EotvCTwD5gsTFxR9x4nBAWtLSVlpKpa7E0XIcZ9cosbe2g-DMH8dpt1s4WZ55Zt6ZeQF4Q_ApIVx8wBgLxIuKnmrlEKGIsAo_AwvCmUBVUfDnYHFgjsBxjD_ylxPMX4IjSgWmuKoW4E9jhuGrdSZ8hEv43bTos4qmg7eTTQb6Hl4Y50eroXIdvNmqMCrtB7_JkbX3Q4TJw_Nfu8EHA9dBuaiD3aV7-ixMG3ijUjLBRWgdTFsDr5srVGI4q8JVloW3Jr0CL3o1RPN6_56A9ZfzdXOJVt8urprlCmnO64RoIURdilL0oqOqxroo886mJRoLwbtSadob3ra4ppS2RV-rrmBEd4zncFmwE_Dpoe1uakfTaeNSUIPcBTuq8Ft6ZeX_GWe3cuN_SsbquipZbvB-3yD4u8nEJEcbdd5EOeOnKAmmeTyGOc8of0B18DEG0x9kCJazf3L2Rs7eyGZ5LQmVs3-57u2_Mx6qHg3LwLs9oKJWQ59Prm184vJJaMUL9hdWOKNw</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>REINHOLD, William C</creator><creator>SUNSHINE, Margot</creator><creator>HONGFANG LIU</creator><creator>VARMA, Sudhir</creator><creator>KOHN, Kurt W</creator><creator>MORRIS, Joel</creator><creator>DOROSHOW, James</creator><creator>POMMIER, Yves</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120715</creationdate><title>CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set</title><author>REINHOLD, William C ; SUNSHINE, Margot ; HONGFANG LIU ; VARMA, Sudhir ; KOHN, Kurt W ; MORRIS, Joel ; DOROSHOW, James ; POMMIER, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-248896868f8d2a90c46137eb1c0885d6ac2fe5bb09222b4f9ad431cd35fe5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Computational Biology</topic><topic>Databases, Factual</topic><topic>Drug Evaluation</topic><topic>Gene Expression</topic><topic>Genomics</topic><topic>Humans</topic><topic>Information Storage and Retrieval</topic><topic>Internet</topic><topic>Medical sciences</topic><topic>Microarray Analysis</topic><topic>MicroRNAs</topic><topic>National Cancer Institute (U.S.)</topic><topic>Pharmacology. Drug treatments</topic><topic>RNA</topic><topic>Tumors</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REINHOLD, William C</creatorcontrib><creatorcontrib>SUNSHINE, Margot</creatorcontrib><creatorcontrib>HONGFANG LIU</creatorcontrib><creatorcontrib>VARMA, Sudhir</creatorcontrib><creatorcontrib>KOHN, Kurt W</creatorcontrib><creatorcontrib>MORRIS, Joel</creatorcontrib><creatorcontrib>DOROSHOW, James</creatorcontrib><creatorcontrib>POMMIER, Yves</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REINHOLD, William C</au><au>SUNSHINE, Margot</au><au>HONGFANG LIU</au><au>VARMA, Sudhir</au><au>KOHN, Kurt W</au><au>MORRIS, Joel</au><au>DOROSHOW, James</au><au>POMMIER, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2012-07-15</date><risdate>2012</risdate><volume>72</volume><issue>14</issue><spage>3499</spage><epage>3511</epage><pages>3499-3511</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the U.S. National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacologic response platforms. In this report, we introduce a CellMiner (http://discover.nci.nih.gov/cellminer/) web application designed to improve the use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,379 genes and 360 microRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the U.S. Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross-comparisons using a novel pattern match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs, and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>22802077</pmid><doi>10.1158/0008-5472.can-12-1370</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2012-07, Vol.72 (14), p.3499-3511
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3399763
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Antineoplastic agents
Antineoplastic Agents - therapeutic use
Biological and medical sciences
Computational Biology
Databases, Factual
Drug Evaluation
Gene Expression
Genomics
Humans
Information Storage and Retrieval
Internet
Medical sciences
Microarray Analysis
MicroRNAs
National Cancer Institute (U.S.)
Pharmacology. Drug treatments
RNA
Tumors
United States
title CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CellMiner:%20A%20Web-Based%20Suite%20of%20Genomic%20and%20Pharmacologic%20Tools%20to%20Explore%20Transcript%20and%20Drug%20Patterns%20in%20the%20NCI-60%20Cell%20Line%20Set&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=REINHOLD,%20William%20C&rft.date=2012-07-15&rft.volume=72&rft.issue=14&rft.spage=3499&rft.epage=3511&rft.pages=3499-3511&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-12-1370&rft_dat=%3Cproquest_pubme%3E1026863055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1026863055&rft_id=info:pmid/22802077&rfr_iscdi=true