Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers

Journal impact factors ( IF s) can be considered historically as the first attempt to normalize citation distributions by using averages over 2 years. However, it has been recognized that citation distributions vary among fields of science and that one needs to normalize for this. Furthermore, the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2012-08, Vol.92 (2), p.355-365
1. Verfasser: Leydesdorff, Loet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 2
container_start_page 355
container_title Scientometrics
container_volume 92
creator Leydesdorff, Loet
description Journal impact factors ( IF s) can be considered historically as the first attempt to normalize citation distributions by using averages over 2 years. However, it has been recognized that citation distributions vary among fields of science and that one needs to normalize for this. Furthermore, the mean—or any central-tendency statistics—is not a good representation of the citation distribution because these distributions are skewed. Important steps have been taken to solve these two problems during the last few years. First, one can normalize at the article level using the citing audience as the reference set. Second, one can use non-parametric statistics for testing the significance of differences among ratings. A proportion of most-highly cited papers (the top-10% or top-quartile) on the basis of fractional counting of the citations may provide an alternative to the current IF . This indicator is intuitively simple, allows for statistical testing, and accords with the state of the art.
doi_str_mv 10.1007/s11192-012-0660-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3399071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826557253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6d890fe69b0a02500b7a0a638fda007e0237080f60159b56587c24f5d94160b13</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2KqmwpH6CXyhek7cFlxl47DgcqhGiLhMSlnC0ncXYDSRxsLxLfvt4_ILj0YHvkee_Zox8hXxF-IEBxGhGx5AwwL6WAqQ9khlJrxrXCAzIDFJqVKOCQfI7xHrJHgP5EDjnXiwUqOSMPF31yYbSpe3KRJk_TytF7v85XPe2GydaJtnnz4YxeC2rHZqtIfmIIJ3Tuw7bm8uTnd-rbbXPwMbFVt1z1z7TukmvoZCcX4hfysbV9dMf784jc_br6e_mH3dz-vr68uGG1BJ2YanQJrVNlBRa4BKgKC1YJ3TY2T-CAiwI0tApQlpVUUhc1X7SyKfNIUKE4Iue73GldDa6p3ZiC7c0UusGGZ-NtZ953xm5llv7JCFGWUGwC5vuA4B_XLiYzdLF2fW9H59fRoOZKyoJLkaW4k9bBxxhc-_oMgtlAMjtIJkMyG0hGZc-3t_97dbxQyQK-E8TcGpcumD2R-J_UfzBKmt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826557253</pqid></control><display><type>article</type><title>Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers</title><source>SpringerNature Complete Journals</source><creator>Leydesdorff, Loet</creator><creatorcontrib>Leydesdorff, Loet</creatorcontrib><description>Journal impact factors ( IF s) can be considered historically as the first attempt to normalize citation distributions by using averages over 2 years. However, it has been recognized that citation distributions vary among fields of science and that one needs to normalize for this. Furthermore, the mean—or any central-tendency statistics—is not a good representation of the citation distribution because these distributions are skewed. Important steps have been taken to solve these two problems during the last few years. First, one can normalize at the article level using the citing audience as the reference set. Second, one can use non-parametric statistics for testing the significance of differences among ratings. A proportion of most-highly cited papers (the top-10% or top-quartile) on the basis of fractional counting of the citations may provide an alternative to the current IF . This indicator is intuitively simple, allows for statistical testing, and accords with the state of the art.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-012-0660-6</identifier><identifier>PMID: 22844165</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computer Science ; Information Storage and Retrieval ; Library Science</subject><ispartof>Scientometrics, 2012-08, Vol.92 (2), p.355-365</ispartof><rights>The Author(s) 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6d890fe69b0a02500b7a0a638fda007e0237080f60159b56587c24f5d94160b13</citedby><cites>FETCH-LOGICAL-c508t-6d890fe69b0a02500b7a0a638fda007e0237080f60159b56587c24f5d94160b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-012-0660-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-012-0660-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22844165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leydesdorff, Loet</creatorcontrib><title>Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><addtitle>Scientometrics</addtitle><description>Journal impact factors ( IF s) can be considered historically as the first attempt to normalize citation distributions by using averages over 2 years. However, it has been recognized that citation distributions vary among fields of science and that one needs to normalize for this. Furthermore, the mean—or any central-tendency statistics—is not a good representation of the citation distribution because these distributions are skewed. Important steps have been taken to solve these two problems during the last few years. First, one can normalize at the article level using the citing audience as the reference set. Second, one can use non-parametric statistics for testing the significance of differences among ratings. A proportion of most-highly cited papers (the top-10% or top-quartile) on the basis of fractional counting of the citations may provide an alternative to the current IF . This indicator is intuitively simple, allows for statistical testing, and accords with the state of the art.</description><subject>Computer Science</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU9P3DAQxa2KqmwpH6CXyhek7cFlxl47DgcqhGiLhMSlnC0ncXYDSRxsLxLfvt4_ILj0YHvkee_Zox8hXxF-IEBxGhGx5AwwL6WAqQ9khlJrxrXCAzIDFJqVKOCQfI7xHrJHgP5EDjnXiwUqOSMPF31yYbSpe3KRJk_TytF7v85XPe2GydaJtnnz4YxeC2rHZqtIfmIIJ3Tuw7bm8uTnd-rbbXPwMbFVt1z1z7TukmvoZCcX4hfysbV9dMf784jc_br6e_mH3dz-vr68uGG1BJ2YanQJrVNlBRa4BKgKC1YJ3TY2T-CAiwI0tApQlpVUUhc1X7SyKfNIUKE4Iue73GldDa6p3ZiC7c0UusGGZ-NtZ953xm5llv7JCFGWUGwC5vuA4B_XLiYzdLF2fW9H59fRoOZKyoJLkaW4k9bBxxhc-_oMgtlAMjtIJkMyG0hGZc-3t_97dbxQyQK-E8TcGpcumD2R-J_UfzBKmt4</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Leydesdorff, Loet</creator><general>Springer Netherlands</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers</title><author>Leydesdorff, Loet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6d890fe69b0a02500b7a0a638fda007e0237080f60159b56587c24f5d94160b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Science</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leydesdorff, Loet</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leydesdorff, Loet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><addtitle>Scientometrics</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>92</volume><issue>2</issue><spage>355</spage><epage>365</epage><pages>355-365</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Journal impact factors ( IF s) can be considered historically as the first attempt to normalize citation distributions by using averages over 2 years. However, it has been recognized that citation distributions vary among fields of science and that one needs to normalize for this. Furthermore, the mean—or any central-tendency statistics—is not a good representation of the citation distribution because these distributions are skewed. Important steps have been taken to solve these two problems during the last few years. First, one can normalize at the article level using the citing audience as the reference set. Second, one can use non-parametric statistics for testing the significance of differences among ratings. A proportion of most-highly cited papers (the top-10% or top-quartile) on the basis of fractional counting of the citations may provide an alternative to the current IF . This indicator is intuitively simple, allows for statistical testing, and accords with the state of the art.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>22844165</pmid><doi>10.1007/s11192-012-0660-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2012-08, Vol.92 (2), p.355-365
issn 0138-9130
1588-2861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3399071
source SpringerNature Complete Journals
subjects Computer Science
Information Storage and Retrieval
Library Science
title Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternatives%20to%20the%20journal%20impact%20factor:%20I3%20and%20the%20top-10%25%20(or%20top-25%25?)%20of%20the%20most-highly%20cited%20papers&rft.jtitle=Scientometrics&rft.au=Leydesdorff,%20Loet&rft.date=2012-08-01&rft.volume=92&rft.issue=2&rft.spage=355&rft.epage=365&rft.pages=355-365&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-012-0660-6&rft_dat=%3Cproquest_pubme%3E1826557253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826557253&rft_id=info:pmid/22844165&rfr_iscdi=true