Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies
The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-06, Vol.287 (27), p.22573-22583 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22583 |
---|---|
container_issue | 27 |
container_start_page | 22573 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Patsalo, Vadim Yondola, Mark A. Luan, Bowu Shoshani, Ilana Kisker, Caroline Green, David F. Raleigh, Daniel P. Hearing, Patrick |
description | The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from their normally punctate appearance into heterogeneous filamentous structures. This E4-ORF3 activity correlates with the inhibition of PML-mediated antiviral activity. The mechanism of E4-ORF3-mediated reorganization of PML nuclear bodies is unknown. Biophysical analysis of the purified WT E4-ORF3 protein revealed an ordered secondary/tertiary structure and the ability to form heterogeneous higher-order multimers in solution. Importantly, a nonfunctional E4-ORF3 mutant protein, L103A, forms a stable dimer with WT secondary structure content. Because the L103A mutant is incapable of PML reorganization, this result suggests that higher-order multimerization of E4-ORF3 may be required for the activity of the protein. In support of this hypothesis, we demonstrate that the E4-ORF3 L103A mutant protein acts as a dominant-negative effector when coexpressed with the WT E4-ORF3 in mammalian cells. It prevents WT E4-ORF3-mediated PML track formation presumably by binding to the WT protein and inhibiting the formation of higher-order multimers. In vitro protein binding studies support this conclusion as demonstrated by copurification of coexpressed WT and L103A proteins in Escherichia coli and coimmunoprecipitation of WT·L103A E4-ORF3 complexes in mammalian cells. These results provide new insight into the properties of the Ad E4-ORF3 protein and suggest that higher-order protein multimerization is essential for E4-ORF3 activity.
Background: The adenovirus E4-ORF3 protein disrupts PML nuclear bodies to inhibit antiviral activity.
Results: The WT E4-ORF3 protein forms higher-order multimers, whereas a nonfunctional mutant forms a dimer.
Conclusion: E4-ORF3 protein multimerization likely is required for the activity of this protein.
Significance: These results provide new insight into the properties of the adenovirus E4-ORF3 protein and suggest that higher-order protein multimerization is essential for activity. |
doi_str_mv | 10.1074/jbc.M112.344234 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820434283</els_id><sourcerecordid>S0021925820434283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c030f42f40b231b6054256889a165e7b0f8285a34a49d4b1929b6a10389f6b593</originalsourceid><addsrcrecordid>eNp1kU1v0zAchyMEYmVw5oYs7un8lhdfkLppZUgdQ2NI3CzH-Sf1SO1iO5XC1-IL4ipQwQEfbFn--flZfrLsNcFLgit-8djo5S0hdMk4p4w_yRYE1yxnBfn6NFtgTEkuaFGfZS9CeMRpcEGeZ2eUFhVjpFpkPy-N22-nYLQakLItWo9WR-Ns2q7SNAUI6PPY9xAietiqiFYtWHcwfgzomud392uGPnkXwVh0D99H49OFG9NvwefOt-DR7ThEswNvfqgjGEV3KkGqV8YmciLsJhicnqLRaAPjN9gZdQJ_HPUAyqNL1xoIL7NnnRoCvPq9nmdf1tcPVzf55u79h6vVJte8wjHXmOGO047jhjLSlLjgtCjrWihSFlA1uKtpXSjGFRctb4igoikVwawWXdkUgp1n72bufmx20Gqw0atB7r3ZKT9Jp4z898SarezdQTImCOFVArydAS5EI4M2EfRWO2tBR0lwKUpGUuhiDmnvQvDQnQoIlkfJMkmWR8lylpxuvPn7Xaf8H6spIOYApN85GPDHbrAa2mQnVbfO_Bf-CxCaufo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Patsalo, Vadim ; Yondola, Mark A. ; Luan, Bowu ; Shoshani, Ilana ; Kisker, Caroline ; Green, David F. ; Raleigh, Daniel P. ; Hearing, Patrick</creator><creatorcontrib>Patsalo, Vadim ; Yondola, Mark A. ; Luan, Bowu ; Shoshani, Ilana ; Kisker, Caroline ; Green, David F. ; Raleigh, Daniel P. ; Hearing, Patrick ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from their normally punctate appearance into heterogeneous filamentous structures. This E4-ORF3 activity correlates with the inhibition of PML-mediated antiviral activity. The mechanism of E4-ORF3-mediated reorganization of PML nuclear bodies is unknown. Biophysical analysis of the purified WT E4-ORF3 protein revealed an ordered secondary/tertiary structure and the ability to form heterogeneous higher-order multimers in solution. Importantly, a nonfunctional E4-ORF3 mutant protein, L103A, forms a stable dimer with WT secondary structure content. Because the L103A mutant is incapable of PML reorganization, this result suggests that higher-order multimerization of E4-ORF3 may be required for the activity of the protein. In support of this hypothesis, we demonstrate that the E4-ORF3 L103A mutant protein acts as a dominant-negative effector when coexpressed with the WT E4-ORF3 in mammalian cells. It prevents WT E4-ORF3-mediated PML track formation presumably by binding to the WT protein and inhibiting the formation of higher-order multimers. In vitro protein binding studies support this conclusion as demonstrated by copurification of coexpressed WT and L103A proteins in Escherichia coli and coimmunoprecipitation of WT·L103A E4-ORF3 complexes in mammalian cells. These results provide new insight into the properties of the Ad E4-ORF3 protein and suggest that higher-order protein multimerization is essential for E4-ORF3 activity.
Background: The adenovirus E4-ORF3 protein disrupts PML nuclear bodies to inhibit antiviral activity.
Results: The WT E4-ORF3 protein forms higher-order multimers, whereas a nonfunctional mutant forms a dimer.
Conclusion: E4-ORF3 protein multimerization likely is required for the activity of this protein.
Significance: These results provide new insight into the properties of the adenovirus E4-ORF3 protein and suggest that higher-order protein multimerization is essential for activity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.344234</identifier><identifier>PMID: 22573317</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenoviridae - metabolism ; Adenoviridae Infections - metabolism ; Adenovirus ; Adenovirus E4 Proteins - genetics ; Adenovirus E4 Proteins - isolation & purification ; Adenovirus E4 Proteins - metabolism ; Biophysics - methods ; Cell Nucleus - metabolism ; Cell Nucleus - virology ; Dimerization ; HeLa Cells ; Host-Parasite Interactions - physiology ; Host-pathogen Interactions ; Humans ; Microbiology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Mutagenesis - physiology ; Nuclear Organization ; Nuclear Proteins - chemistry ; Nuclear Proteins - metabolism ; Promyelocytic Leukemia Protein ; Protein Interaction Domains and Motifs - physiology ; Protein Purification ; Protein-protein Interactions ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2012-06, Vol.287 (27), p.22573-22583</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c030f42f40b231b6054256889a165e7b0f8285a34a49d4b1929b6a10389f6b593</citedby><cites>FETCH-LOGICAL-c470t-c030f42f40b231b6054256889a165e7b0f8285a34a49d4b1929b6a10389f6b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391147/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391147/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22573317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1069631$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patsalo, Vadim</creatorcontrib><creatorcontrib>Yondola, Mark A.</creatorcontrib><creatorcontrib>Luan, Bowu</creatorcontrib><creatorcontrib>Shoshani, Ilana</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><creatorcontrib>Green, David F.</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><creatorcontrib>Hearing, Patrick</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from their normally punctate appearance into heterogeneous filamentous structures. This E4-ORF3 activity correlates with the inhibition of PML-mediated antiviral activity. The mechanism of E4-ORF3-mediated reorganization of PML nuclear bodies is unknown. Biophysical analysis of the purified WT E4-ORF3 protein revealed an ordered secondary/tertiary structure and the ability to form heterogeneous higher-order multimers in solution. Importantly, a nonfunctional E4-ORF3 mutant protein, L103A, forms a stable dimer with WT secondary structure content. Because the L103A mutant is incapable of PML reorganization, this result suggests that higher-order multimerization of E4-ORF3 may be required for the activity of the protein. In support of this hypothesis, we demonstrate that the E4-ORF3 L103A mutant protein acts as a dominant-negative effector when coexpressed with the WT E4-ORF3 in mammalian cells. It prevents WT E4-ORF3-mediated PML track formation presumably by binding to the WT protein and inhibiting the formation of higher-order multimers. In vitro protein binding studies support this conclusion as demonstrated by copurification of coexpressed WT and L103A proteins in Escherichia coli and coimmunoprecipitation of WT·L103A E4-ORF3 complexes in mammalian cells. These results provide new insight into the properties of the Ad E4-ORF3 protein and suggest that higher-order protein multimerization is essential for E4-ORF3 activity.
Background: The adenovirus E4-ORF3 protein disrupts PML nuclear bodies to inhibit antiviral activity.
Results: The WT E4-ORF3 protein forms higher-order multimers, whereas a nonfunctional mutant forms a dimer.
Conclusion: E4-ORF3 protein multimerization likely is required for the activity of this protein.
Significance: These results provide new insight into the properties of the adenovirus E4-ORF3 protein and suggest that higher-order protein multimerization is essential for activity.</description><subject>Adenoviridae - metabolism</subject><subject>Adenoviridae Infections - metabolism</subject><subject>Adenovirus</subject><subject>Adenovirus E4 Proteins - genetics</subject><subject>Adenovirus E4 Proteins - isolation & purification</subject><subject>Adenovirus E4 Proteins - metabolism</subject><subject>Biophysics - methods</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - virology</subject><subject>Dimerization</subject><subject>HeLa Cells</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Host-pathogen Interactions</subject><subject>Humans</subject><subject>Microbiology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutagenesis - physiology</subject><subject>Nuclear Organization</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - metabolism</subject><subject>Promyelocytic Leukemia Protein</subject><subject>Protein Interaction Domains and Motifs - physiology</subject><subject>Protein Purification</subject><subject>Protein-protein Interactions</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v0zAchyMEYmVw5oYs7un8lhdfkLppZUgdQ2NI3CzH-Sf1SO1iO5XC1-IL4ipQwQEfbFn--flZfrLsNcFLgit-8djo5S0hdMk4p4w_yRYE1yxnBfn6NFtgTEkuaFGfZS9CeMRpcEGeZ2eUFhVjpFpkPy-N22-nYLQakLItWo9WR-Ns2q7SNAUI6PPY9xAietiqiFYtWHcwfgzomud392uGPnkXwVh0D99H49OFG9NvwefOt-DR7ThEswNvfqgjGEV3KkGqV8YmciLsJhicnqLRaAPjN9gZdQJ_HPUAyqNL1xoIL7NnnRoCvPq9nmdf1tcPVzf55u79h6vVJte8wjHXmOGO047jhjLSlLjgtCjrWihSFlA1uKtpXSjGFRctb4igoikVwawWXdkUgp1n72bufmx20Gqw0atB7r3ZKT9Jp4z898SarezdQTImCOFVArydAS5EI4M2EfRWO2tBR0lwKUpGUuhiDmnvQvDQnQoIlkfJMkmWR8lylpxuvPn7Xaf8H6spIOYApN85GPDHbrAa2mQnVbfO_Bf-CxCaufo</recordid><startdate>20120629</startdate><enddate>20120629</enddate><creator>Patsalo, Vadim</creator><creator>Yondola, Mark A.</creator><creator>Luan, Bowu</creator><creator>Shoshani, Ilana</creator><creator>Kisker, Caroline</creator><creator>Green, David F.</creator><creator>Raleigh, Daniel P.</creator><creator>Hearing, Patrick</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20120629</creationdate><title>Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies</title><author>Patsalo, Vadim ; Yondola, Mark A. ; Luan, Bowu ; Shoshani, Ilana ; Kisker, Caroline ; Green, David F. ; Raleigh, Daniel P. ; Hearing, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c030f42f40b231b6054256889a165e7b0f8285a34a49d4b1929b6a10389f6b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenoviridae - metabolism</topic><topic>Adenoviridae Infections - metabolism</topic><topic>Adenovirus</topic><topic>Adenovirus E4 Proteins - genetics</topic><topic>Adenovirus E4 Proteins - isolation & purification</topic><topic>Adenovirus E4 Proteins - metabolism</topic><topic>Biophysics - methods</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - virology</topic><topic>Dimerization</topic><topic>HeLa Cells</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Host-pathogen Interactions</topic><topic>Humans</topic><topic>Microbiology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutagenesis - physiology</topic><topic>Nuclear Organization</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - metabolism</topic><topic>Promyelocytic Leukemia Protein</topic><topic>Protein Interaction Domains and Motifs - physiology</topic><topic>Protein Purification</topic><topic>Protein-protein Interactions</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patsalo, Vadim</creatorcontrib><creatorcontrib>Yondola, Mark A.</creatorcontrib><creatorcontrib>Luan, Bowu</creatorcontrib><creatorcontrib>Shoshani, Ilana</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><creatorcontrib>Green, David F.</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><creatorcontrib>Hearing, Patrick</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patsalo, Vadim</au><au>Yondola, Mark A.</au><au>Luan, Bowu</au><au>Shoshani, Ilana</au><au>Kisker, Caroline</au><au>Green, David F.</au><au>Raleigh, Daniel P.</au><au>Hearing, Patrick</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-06-29</date><risdate>2012</risdate><volume>287</volume><issue>27</issue><spage>22573</spage><epage>22583</epage><pages>22573-22583</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The early region 4 open reading frame 3 protein (E4-ORF3; UniProt ID P04489) is the most highly conserved of all adenovirus-encoded gene products at the amino acid level. A conserved attribute of the E4-ORF3 proteins of different human adenoviruses is the ability to disrupt PML nuclear bodies from their normally punctate appearance into heterogeneous filamentous structures. This E4-ORF3 activity correlates with the inhibition of PML-mediated antiviral activity. The mechanism of E4-ORF3-mediated reorganization of PML nuclear bodies is unknown. Biophysical analysis of the purified WT E4-ORF3 protein revealed an ordered secondary/tertiary structure and the ability to form heterogeneous higher-order multimers in solution. Importantly, a nonfunctional E4-ORF3 mutant protein, L103A, forms a stable dimer with WT secondary structure content. Because the L103A mutant is incapable of PML reorganization, this result suggests that higher-order multimerization of E4-ORF3 may be required for the activity of the protein. In support of this hypothesis, we demonstrate that the E4-ORF3 L103A mutant protein acts as a dominant-negative effector when coexpressed with the WT E4-ORF3 in mammalian cells. It prevents WT E4-ORF3-mediated PML track formation presumably by binding to the WT protein and inhibiting the formation of higher-order multimers. In vitro protein binding studies support this conclusion as demonstrated by copurification of coexpressed WT and L103A proteins in Escherichia coli and coimmunoprecipitation of WT·L103A E4-ORF3 complexes in mammalian cells. These results provide new insight into the properties of the Ad E4-ORF3 protein and suggest that higher-order protein multimerization is essential for E4-ORF3 activity.
Background: The adenovirus E4-ORF3 protein disrupts PML nuclear bodies to inhibit antiviral activity.
Results: The WT E4-ORF3 protein forms higher-order multimers, whereas a nonfunctional mutant forms a dimer.
Conclusion: E4-ORF3 protein multimerization likely is required for the activity of this protein.
Significance: These results provide new insight into the properties of the adenovirus E4-ORF3 protein and suggest that higher-order protein multimerization is essential for activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22573317</pmid><doi>10.1074/jbc.M112.344234</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-06, Vol.287 (27), p.22573-22583 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391147 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenoviridae - metabolism Adenoviridae Infections - metabolism Adenovirus Adenovirus E4 Proteins - genetics Adenovirus E4 Proteins - isolation & purification Adenovirus E4 Proteins - metabolism Biophysics - methods Cell Nucleus - metabolism Cell Nucleus - virology Dimerization HeLa Cells Host-Parasite Interactions - physiology Host-pathogen Interactions Humans Microbiology Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Mutagenesis - physiology Nuclear Organization Nuclear Proteins - chemistry Nuclear Proteins - metabolism Promyelocytic Leukemia Protein Protein Interaction Domains and Motifs - physiology Protein Purification Protein-protein Interactions Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Transcription Factors - chemistry Transcription Factors - metabolism Tumor Suppressor Proteins - chemistry Tumor Suppressor Proteins - metabolism |
title | Biophysical and Functional Analyses Suggest That Adenovirus E4-ORF3 Protein Requires Higher-order Multimerization to Function against Promyelocytic Leukemia Protein Nuclear Bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysical%20and%20Functional%20Analyses%20Suggest%20That%20Adenovirus%20E4-ORF3%20Protein%20Requires%20Higher-order%20Multimerization%20to%20Function%20against%20Promyelocytic%20Leukemia%20Protein%20Nuclear%20Bodies&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Patsalo,%20Vadim&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2012-06-29&rft.volume=287&rft.issue=27&rft.spage=22573&rft.epage=22583&rft.pages=22573-22583&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.344234&rft_dat=%3Celsevier_pubme%3ES0021925820434283%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22573317&rft_els_id=S0021925820434283&rfr_iscdi=true |