Regulatory Domain Determinants That Control PKD1 Activity

The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser916, a modification frequently used as a surrogate marke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-06, Vol.287 (27), p.22609-22615
Hauptverfasser: Rybin, Vitalyi O., Guo, Jianfen, Harleton, Erin, Zhang, Fan, Steinberg, Susan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22615
container_issue 27
container_start_page 22609
container_title The Journal of biological chemistry
container_volume 287
creator Rybin, Vitalyi O.
Guo, Jianfen
Harleton, Erin
Zhang, Fan
Steinberg, Susan F.
description The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser916, a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1–321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser916 autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1–321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses. Background: PKD1 catalytic fragments accumulate during apoptosis; their cellular actions remain uncertain. Results: A PKD1 truncation mutant lacking the N-terminal portion of the regulatory domain does not phosphorylate protein substrates or activate PKD1-dependent cellular responses. Conclusion: The N-terminal portion of the regulatory domain (encompassing the C1 domain) is a positive regulator of PKD1 activity. Significance: Proteolysis limits the cellular actions of PKD1.
doi_str_mv 10.1074/jbc.M112.379719
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820434313</els_id><sourcerecordid>22582392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-32182c9f2589b535a1cd2b8d480e7fd36eaefae3faf44bd798a4ceccc3cd1ba43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbP3mT_wLb5WndzEUrrF1YUqeAtZJPZNqW7kWxa6L83ZbXowbkMzLzzzsyD0CXBQ4JzPlqVevhMCB2yXOREHKE-wQVLWUY-jlEfY0pSQbOih87adoVjcEFOUY_GGmWC9pF4g8VmrYLzu2TqamWbZAoBfG0b1YQ2mS9VSCauCd6tk9enKUnGOtitDbtzdFKpdQsX33mA3u9u55OHdPZy_zgZz1LNOQspo6SgWlRxoygzlimiDS0LwwsMeWXYNSioFLBKVZyXJheF4hq01kwbUirOBuim8_3clDUYDfEWtZaf3tbK76RTVv7tNHYpF24rGRMRBo0Go85Ae9e2HqrDLMFyT1FGinJPUXYU48TV75UH_Q-2KBCdAOLjWwtettpCo8FYDzpI4-y_5l_Pn4Nd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regulatory Domain Determinants That Control PKD1 Activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rybin, Vitalyi O. ; Guo, Jianfen ; Harleton, Erin ; Zhang, Fan ; Steinberg, Susan F.</creator><creatorcontrib>Rybin, Vitalyi O. ; Guo, Jianfen ; Harleton, Erin ; Zhang, Fan ; Steinberg, Susan F.</creatorcontrib><description>The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser916, a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1–321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser916 autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1–321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses. Background: PKD1 catalytic fragments accumulate during apoptosis; their cellular actions remain uncertain. Results: A PKD1 truncation mutant lacking the N-terminal portion of the regulatory domain does not phosphorylate protein substrates or activate PKD1-dependent cellular responses. Conclusion: The N-terminal portion of the regulatory domain (encompassing the C1 domain) is a positive regulator of PKD1 activity. Significance: Proteolysis limits the cellular actions of PKD1.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.379719</identifier><identifier>PMID: 22582392</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activation Loop ; Animals ; Apoptosis - physiology ; Autophosphorylation ; C1 Domain ; Catalytic Domain ; CREB ; CREB-Binding Protein - metabolism ; Enzyme Activation - physiology ; ERK ; Extracellular Signal-Regulated MAP Kinases - metabolism ; HEK293 Cells ; Humans ; Mice ; Mutagenesis ; Myocardial Contraction - physiology ; Myocardium - enzymology ; Myocardium - pathology ; NIH 3T3 Cells ; PH Domain ; Phosphorylation - physiology ; Protein Domains ; Protein Kinase D (PKD) ; Protein Kinases ; Protein Structure, Tertiary ; Signal Transduction ; Substrate Specificity ; Troponin I - metabolism ; TRPP Cation Channels - chemistry ; TRPP Cation Channels - genetics ; TRPP Cation Channels - metabolism ; Ventricular Remodeling - physiology</subject><ispartof>The Journal of biological chemistry, 2012-06, Vol.287 (27), p.22609-22615</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-32182c9f2589b535a1cd2b8d480e7fd36eaefae3faf44bd798a4ceccc3cd1ba43</citedby><cites>FETCH-LOGICAL-c443t-32182c9f2589b535a1cd2b8d480e7fd36eaefae3faf44bd798a4ceccc3cd1ba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391082/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391082/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22582392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rybin, Vitalyi O.</creatorcontrib><creatorcontrib>Guo, Jianfen</creatorcontrib><creatorcontrib>Harleton, Erin</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Steinberg, Susan F.</creatorcontrib><title>Regulatory Domain Determinants That Control PKD1 Activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser916, a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1–321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser916 autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1–321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses. Background: PKD1 catalytic fragments accumulate during apoptosis; their cellular actions remain uncertain. Results: A PKD1 truncation mutant lacking the N-terminal portion of the regulatory domain does not phosphorylate protein substrates or activate PKD1-dependent cellular responses. Conclusion: The N-terminal portion of the regulatory domain (encompassing the C1 domain) is a positive regulator of PKD1 activity. Significance: Proteolysis limits the cellular actions of PKD1.</description><subject>Activation Loop</subject><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Autophosphorylation</subject><subject>C1 Domain</subject><subject>Catalytic Domain</subject><subject>CREB</subject><subject>CREB-Binding Protein - metabolism</subject><subject>Enzyme Activation - physiology</subject><subject>ERK</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - pathology</subject><subject>NIH 3T3 Cells</subject><subject>PH Domain</subject><subject>Phosphorylation - physiology</subject><subject>Protein Domains</subject><subject>Protein Kinase D (PKD)</subject><subject>Protein Kinases</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><subject>Troponin I - metabolism</subject><subject>TRPP Cation Channels - chemistry</subject><subject>TRPP Cation Channels - genetics</subject><subject>TRPP Cation Channels - metabolism</subject><subject>Ventricular Remodeling - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlbP3mT_wLb5WndzEUrrF1YUqeAtZJPZNqW7kWxa6L83ZbXowbkMzLzzzsyD0CXBQ4JzPlqVevhMCB2yXOREHKE-wQVLWUY-jlEfY0pSQbOih87adoVjcEFOUY_GGmWC9pF4g8VmrYLzu2TqamWbZAoBfG0b1YQ2mS9VSCauCd6tk9enKUnGOtitDbtzdFKpdQsX33mA3u9u55OHdPZy_zgZz1LNOQspo6SgWlRxoygzlimiDS0LwwsMeWXYNSioFLBKVZyXJheF4hq01kwbUirOBuim8_3clDUYDfEWtZaf3tbK76RTVv7tNHYpF24rGRMRBo0Go85Ae9e2HqrDLMFyT1FGinJPUXYU48TV75UH_Q-2KBCdAOLjWwtettpCo8FYDzpI4-y_5l_Pn4Nd</recordid><startdate>20120629</startdate><enddate>20120629</enddate><creator>Rybin, Vitalyi O.</creator><creator>Guo, Jianfen</creator><creator>Harleton, Erin</creator><creator>Zhang, Fan</creator><creator>Steinberg, Susan F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120629</creationdate><title>Regulatory Domain Determinants That Control PKD1 Activity</title><author>Rybin, Vitalyi O. ; Guo, Jianfen ; Harleton, Erin ; Zhang, Fan ; Steinberg, Susan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-32182c9f2589b535a1cd2b8d480e7fd36eaefae3faf44bd798a4ceccc3cd1ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation Loop</topic><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Autophosphorylation</topic><topic>C1 Domain</topic><topic>Catalytic Domain</topic><topic>CREB</topic><topic>CREB-Binding Protein - metabolism</topic><topic>Enzyme Activation - physiology</topic><topic>ERK</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - pathology</topic><topic>NIH 3T3 Cells</topic><topic>PH Domain</topic><topic>Phosphorylation - physiology</topic><topic>Protein Domains</topic><topic>Protein Kinase D (PKD)</topic><topic>Protein Kinases</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><topic>Troponin I - metabolism</topic><topic>TRPP Cation Channels - chemistry</topic><topic>TRPP Cation Channels - genetics</topic><topic>TRPP Cation Channels - metabolism</topic><topic>Ventricular Remodeling - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybin, Vitalyi O.</creatorcontrib><creatorcontrib>Guo, Jianfen</creatorcontrib><creatorcontrib>Harleton, Erin</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Steinberg, Susan F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybin, Vitalyi O.</au><au>Guo, Jianfen</au><au>Harleton, Erin</au><au>Zhang, Fan</au><au>Steinberg, Susan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory Domain Determinants That Control PKD1 Activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-06-29</date><risdate>2012</risdate><volume>287</volume><issue>27</issue><spage>22609</spage><epage>22615</epage><pages>22609-22615</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser916, a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1–321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser916 autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1–321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses. Background: PKD1 catalytic fragments accumulate during apoptosis; their cellular actions remain uncertain. Results: A PKD1 truncation mutant lacking the N-terminal portion of the regulatory domain does not phosphorylate protein substrates or activate PKD1-dependent cellular responses. Conclusion: The N-terminal portion of the regulatory domain (encompassing the C1 domain) is a positive regulator of PKD1 activity. Significance: Proteolysis limits the cellular actions of PKD1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22582392</pmid><doi>10.1074/jbc.M112.379719</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-06, Vol.287 (27), p.22609-22615
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391082
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Activation Loop
Animals
Apoptosis - physiology
Autophosphorylation
C1 Domain
Catalytic Domain
CREB
CREB-Binding Protein - metabolism
Enzyme Activation - physiology
ERK
Extracellular Signal-Regulated MAP Kinases - metabolism
HEK293 Cells
Humans
Mice
Mutagenesis
Myocardial Contraction - physiology
Myocardium - enzymology
Myocardium - pathology
NIH 3T3 Cells
PH Domain
Phosphorylation - physiology
Protein Domains
Protein Kinase D (PKD)
Protein Kinases
Protein Structure, Tertiary
Signal Transduction
Substrate Specificity
Troponin I - metabolism
TRPP Cation Channels - chemistry
TRPP Cation Channels - genetics
TRPP Cation Channels - metabolism
Ventricular Remodeling - physiology
title Regulatory Domain Determinants That Control PKD1 Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20Domain%20Determinants%20That%20Control%20PKD1%20Activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Rybin,%20Vitalyi%20O.&rft.date=2012-06-29&rft.volume=287&rft.issue=27&rft.spage=22609&rft.epage=22615&rft.pages=22609-22615&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.379719&rft_dat=%3Cpubmed_cross%3E22582392%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22582392&rft_els_id=S0021925820434313&rfr_iscdi=true