Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression

Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-07, Vol.287 (28), p.23667-23677
Hauptverfasser: Duan, Yajun, Chen, Yuanli, Hu, Wenquan, Li, Xiaoju, Yang, Xiaoxiao, Zhou, Xin, Yin, Zhinan, Kong, Deling, Yao, Zhi, Hajjar, David P., Liu, Lin, Liu, Qiang, Han, Jihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23677
container_issue 28
container_start_page 23667
container_title The Journal of biological chemistry
container_volume 287
creator Duan, Yajun
Chen, Yuanli
Hu, Wenquan
Li, Xiaoju
Yang, Xiaoxiao
Zhou, Xin
Yin, Zhinan
Kong, Deling
Yao, Zhi
Hajjar, David P.
Liu, Lin
Liu, Qiang
Han, Jihong
description Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism. Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown. Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism. Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression. Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.
doi_str_mv 10.1074/jbc.M112.350181
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820433745</els_id><sourcerecordid>S0021925820433745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EomlhzQ75BSb130zGG6QqFFoRRAVFYmd57OvW1WQ8sp2QPBcPwBvwTDgMRLDAkq-l63O-a-sg9IKSOSULcf7Qmfl7Stmc14S29BGaUdLyitf0y2M0I4TRSrK6PUGnKT2QsoSkT9EJY7Xk9aKeoe83EMPOp7AGfBND7x1EnUOstMl-qzNY_BEMjKWFf3zDF1PXhwF3e7zyd3qwCZeCX8N4H1LZcd9PguvBbgykA3aMIYMf8DIMW4hZJ8CfNl32vU-l-w52pd7uR8DyF2sVvhbekHw-zBiP9uNLLndjhJTKlGfoidN9gue_zzP0-c3l7fKqWn14e728WFVGCJ6r1rbaUCeoFIR2dSNhAUJa5xoqmGFGtFpb2wnqiOOGOCkZI9w42dSatq7hZ-jVxB033RqsgSFH3asx-rWOexW0V__eDP5e3YWt4lySRtACOJ8AJoaUIrijlxJ1yFKVLNUhSzVlWRwv_x551P8JrwjkJIDy8a2HqJLxMBiwPoLJygb_X_hPI0u2PA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</creator><creatorcontrib>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</creatorcontrib><description>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism. Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown. Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism. Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression. Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.350181</identifier><identifier>PMID: 22593575</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3-L1 Cells ; Animals ; Blotting, Western ; Butadienes - pharmacology ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - metabolism ; Cholesterol Metabolism ; Cholesterol, LDL - blood ; Enzyme Inhibitors - pharmacology ; ERK ; Gene Expression ; Hep G2 Cells ; Humans ; Hypoglycemic Agents - pharmacology ; Lipids ; Lipoprotein Receptor ; Liver - drug effects ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - antagonists &amp; inhibitors ; Mitogen-Activated Protein Kinase 3 - metabolism ; Nitriles - pharmacology ; PCSK9 ; Peroxisome Proliferator-activated Receptor (PPAR) ; Phosphorylation ; Phosphorylation - drug effects ; Pioglitazone ; PPAR gamma - agonists ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Proprotein Convertase 9 ; Proprotein Convertases - genetics ; Proprotein Convertases - metabolism ; Receptors, LDL - genetics ; Receptors, LDL - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Sterol Regulatory Element Binding Protein 2 - genetics ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Thiazolidinediones - pharmacology</subject><ispartof>The Journal of biological chemistry, 2012-07, Vol.287 (28), p.23667-23677</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</citedby><cites>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390641/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390641/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22593575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Chen, Yuanli</creatorcontrib><creatorcontrib>Hu, Wenquan</creatorcontrib><creatorcontrib>Li, Xiaoju</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Yin, Zhinan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Yao, Zhi</creatorcontrib><creatorcontrib>Hajjar, David P.</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Han, Jihong</creatorcontrib><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism. Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown. Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism. Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression. Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</description><subject>3T3-L1 Cells</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Butadienes - pharmacology</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - metabolism</subject><subject>Cholesterol Metabolism</subject><subject>Cholesterol, LDL - blood</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ERK</subject><subject>Gene Expression</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Lipids</subject><subject>Lipoprotein Receptor</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - antagonists &amp; inhibitors</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Nitriles - pharmacology</subject><subject>PCSK9</subject><subject>Peroxisome Proliferator-activated Receptor (PPAR)</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Pioglitazone</subject><subject>PPAR gamma - agonists</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Proprotein Convertase 9</subject><subject>Proprotein Convertases - genetics</subject><subject>Proprotein Convertases - metabolism</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Thiazolidinediones - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EomlhzQ75BSb130zGG6QqFFoRRAVFYmd57OvW1WQ8sp2QPBcPwBvwTDgMRLDAkq-l63O-a-sg9IKSOSULcf7Qmfl7Stmc14S29BGaUdLyitf0y2M0I4TRSrK6PUGnKT2QsoSkT9EJY7Xk9aKeoe83EMPOp7AGfBND7x1EnUOstMl-qzNY_BEMjKWFf3zDF1PXhwF3e7zyd3qwCZeCX8N4H1LZcd9PguvBbgykA3aMIYMf8DIMW4hZJ8CfNl32vU-l-w52pd7uR8DyF2sVvhbekHw-zBiP9uNLLndjhJTKlGfoidN9gue_zzP0-c3l7fKqWn14e728WFVGCJ6r1rbaUCeoFIR2dSNhAUJa5xoqmGFGtFpb2wnqiOOGOCkZI9w42dSatq7hZ-jVxB033RqsgSFH3asx-rWOexW0V__eDP5e3YWt4lySRtACOJ8AJoaUIrijlxJ1yFKVLNUhSzVlWRwv_x551P8JrwjkJIDy8a2HqJLxMBiwPoLJygb_X_hPI0u2PA</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Duan, Yajun</creator><creator>Chen, Yuanli</creator><creator>Hu, Wenquan</creator><creator>Li, Xiaoju</creator><creator>Yang, Xiaoxiao</creator><creator>Zhou, Xin</creator><creator>Yin, Zhinan</creator><creator>Kong, Deling</creator><creator>Yao, Zhi</creator><creator>Hajjar, David P.</creator><creator>Liu, Lin</creator><creator>Liu, Qiang</creator><creator>Han, Jihong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120706</creationdate><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><author>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3T3-L1 Cells</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Butadienes - pharmacology</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - metabolism</topic><topic>Cholesterol Metabolism</topic><topic>Cholesterol, LDL - blood</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ERK</topic><topic>Gene Expression</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Lipids</topic><topic>Lipoprotein Receptor</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - antagonists &amp; inhibitors</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Nitriles - pharmacology</topic><topic>PCSK9</topic><topic>Peroxisome Proliferator-activated Receptor (PPAR)</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Pioglitazone</topic><topic>PPAR gamma - agonists</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Proprotein Convertase 9</topic><topic>Proprotein Convertases - genetics</topic><topic>Proprotein Convertases - metabolism</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Thiazolidinediones - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Chen, Yuanli</creatorcontrib><creatorcontrib>Hu, Wenquan</creatorcontrib><creatorcontrib>Li, Xiaoju</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Yin, Zhinan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Yao, Zhi</creatorcontrib><creatorcontrib>Hajjar, David P.</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Han, Jihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yajun</au><au>Chen, Yuanli</au><au>Hu, Wenquan</au><au>Li, Xiaoju</au><au>Yang, Xiaoxiao</au><au>Zhou, Xin</au><au>Yin, Zhinan</au><au>Kong, Deling</au><au>Yao, Zhi</au><au>Hajjar, David P.</au><au>Liu, Lin</au><au>Liu, Qiang</au><au>Han, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-07-06</date><risdate>2012</risdate><volume>287</volume><issue>28</issue><spage>23667</spage><epage>23677</epage><pages>23667-23677</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism. Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown. Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism. Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression. Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22593575</pmid><doi>10.1074/jbc.M112.350181</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-07, Vol.287 (28), p.23667-23677
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390641
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 3T3-L1 Cells
Animals
Blotting, Western
Butadienes - pharmacology
Cholesterol 7-alpha-Hydroxylase - genetics
Cholesterol 7-alpha-Hydroxylase - metabolism
Cholesterol Metabolism
Cholesterol, LDL - blood
Enzyme Inhibitors - pharmacology
ERK
Gene Expression
Hep G2 Cells
Humans
Hypoglycemic Agents - pharmacology
Lipids
Lipoprotein Receptor
Liver - drug effects
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Microscopy, Fluorescence
Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 3 - metabolism
Nitriles - pharmacology
PCSK9
Peroxisome Proliferator-activated Receptor (PPAR)
Phosphorylation
Phosphorylation - drug effects
Pioglitazone
PPAR gamma - agonists
PPAR gamma - genetics
PPAR gamma - metabolism
Proprotein Convertase 9
Proprotein Convertases - genetics
Proprotein Convertases - metabolism
Receptors, LDL - genetics
Receptors, LDL - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
Sterol Regulatory Element Binding Protein 2 - genetics
Sterol Regulatory Element Binding Protein 2 - metabolism
Thiazolidinediones - pharmacology
title Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peroxisome%20Proliferator-activated%20Receptor%20%CE%B3%20Activation%20by%20Ligands%20and%20Dephosphorylation%20Induces%20Proprotein%20Convertase%20Subtilisin%20Kexin%20Type%209%20and%20Low%20Density%20Lipoprotein%20Receptor%20Expression&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Duan,%20Yajun&rft.date=2012-07-06&rft.volume=287&rft.issue=28&rft.spage=23667&rft.epage=23677&rft.pages=23667-23677&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.350181&rft_dat=%3Celsevier_pubme%3ES0021925820433745%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22593575&rft_els_id=S0021925820433745&rfr_iscdi=true