Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression
Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or d...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-07, Vol.287 (28), p.23667-23677 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23677 |
---|---|
container_issue | 28 |
container_start_page | 23667 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Duan, Yajun Chen, Yuanli Hu, Wenquan Li, Xiaoju Yang, Xiaoxiao Zhou, Xin Yin, Zhinan Kong, Deling Yao, Zhi Hajjar, David P. Liu, Lin Liu, Qiang Han, Jihong |
description | Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.
Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown.
Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism.
Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression.
Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression. |
doi_str_mv | 10.1074/jbc.M112.350181 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820433745</els_id><sourcerecordid>S0021925820433745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EomlhzQ75BSb130zGG6QqFFoRRAVFYmd57OvW1WQ8sp2QPBcPwBvwTDgMRLDAkq-l63O-a-sg9IKSOSULcf7Qmfl7Stmc14S29BGaUdLyitf0y2M0I4TRSrK6PUGnKT2QsoSkT9EJY7Xk9aKeoe83EMPOp7AGfBND7x1EnUOstMl-qzNY_BEMjKWFf3zDF1PXhwF3e7zyd3qwCZeCX8N4H1LZcd9PguvBbgykA3aMIYMf8DIMW4hZJ8CfNl32vU-l-w52pd7uR8DyF2sVvhbekHw-zBiP9uNLLndjhJTKlGfoidN9gue_zzP0-c3l7fKqWn14e728WFVGCJ6r1rbaUCeoFIR2dSNhAUJa5xoqmGFGtFpb2wnqiOOGOCkZI9w42dSatq7hZ-jVxB033RqsgSFH3asx-rWOexW0V__eDP5e3YWt4lySRtACOJ8AJoaUIrijlxJ1yFKVLNUhSzVlWRwv_x551P8JrwjkJIDy8a2HqJLxMBiwPoLJygb_X_hPI0u2PA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</creator><creatorcontrib>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</creatorcontrib><description>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.
Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown.
Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism.
Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression.
Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.350181</identifier><identifier>PMID: 22593575</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3-L1 Cells ; Animals ; Blotting, Western ; Butadienes - pharmacology ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - metabolism ; Cholesterol Metabolism ; Cholesterol, LDL - blood ; Enzyme Inhibitors - pharmacology ; ERK ; Gene Expression ; Hep G2 Cells ; Humans ; Hypoglycemic Agents - pharmacology ; Lipids ; Lipoprotein Receptor ; Liver - drug effects ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors ; Mitogen-Activated Protein Kinase 3 - metabolism ; Nitriles - pharmacology ; PCSK9 ; Peroxisome Proliferator-activated Receptor (PPAR) ; Phosphorylation ; Phosphorylation - drug effects ; Pioglitazone ; PPAR gamma - agonists ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Proprotein Convertase 9 ; Proprotein Convertases - genetics ; Proprotein Convertases - metabolism ; Receptors, LDL - genetics ; Receptors, LDL - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Sterol Regulatory Element Binding Protein 2 - genetics ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Thiazolidinediones - pharmacology</subject><ispartof>The Journal of biological chemistry, 2012-07, Vol.287 (28), p.23667-23677</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</citedby><cites>FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390641/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390641/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22593575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Chen, Yuanli</creatorcontrib><creatorcontrib>Hu, Wenquan</creatorcontrib><creatorcontrib>Li, Xiaoju</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Yin, Zhinan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Yao, Zhi</creatorcontrib><creatorcontrib>Hajjar, David P.</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Han, Jihong</creatorcontrib><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.
Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown.
Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism.
Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression.
Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</description><subject>3T3-L1 Cells</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Butadienes - pharmacology</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - metabolism</subject><subject>Cholesterol Metabolism</subject><subject>Cholesterol, LDL - blood</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ERK</subject><subject>Gene Expression</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Lipids</subject><subject>Lipoprotein Receptor</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Nitriles - pharmacology</subject><subject>PCSK9</subject><subject>Peroxisome Proliferator-activated Receptor (PPAR)</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Pioglitazone</subject><subject>PPAR gamma - agonists</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Proprotein Convertase 9</subject><subject>Proprotein Convertases - genetics</subject><subject>Proprotein Convertases - metabolism</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Thiazolidinediones - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EomlhzQ75BSb130zGG6QqFFoRRAVFYmd57OvW1WQ8sp2QPBcPwBvwTDgMRLDAkq-l63O-a-sg9IKSOSULcf7Qmfl7Stmc14S29BGaUdLyitf0y2M0I4TRSrK6PUGnKT2QsoSkT9EJY7Xk9aKeoe83EMPOp7AGfBND7x1EnUOstMl-qzNY_BEMjKWFf3zDF1PXhwF3e7zyd3qwCZeCX8N4H1LZcd9PguvBbgykA3aMIYMf8DIMW4hZJ8CfNl32vU-l-w52pd7uR8DyF2sVvhbekHw-zBiP9uNLLndjhJTKlGfoidN9gue_zzP0-c3l7fKqWn14e728WFVGCJ6r1rbaUCeoFIR2dSNhAUJa5xoqmGFGtFpb2wnqiOOGOCkZI9w42dSatq7hZ-jVxB033RqsgSFH3asx-rWOexW0V__eDP5e3YWt4lySRtACOJ8AJoaUIrijlxJ1yFKVLNUhSzVlWRwv_x551P8JrwjkJIDy8a2HqJLxMBiwPoLJygb_X_hPI0u2PA</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Duan, Yajun</creator><creator>Chen, Yuanli</creator><creator>Hu, Wenquan</creator><creator>Li, Xiaoju</creator><creator>Yang, Xiaoxiao</creator><creator>Zhou, Xin</creator><creator>Yin, Zhinan</creator><creator>Kong, Deling</creator><creator>Yao, Zhi</creator><creator>Hajjar, David P.</creator><creator>Liu, Lin</creator><creator>Liu, Qiang</creator><creator>Han, Jihong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120706</creationdate><title>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</title><author>Duan, Yajun ; Chen, Yuanli ; Hu, Wenquan ; Li, Xiaoju ; Yang, Xiaoxiao ; Zhou, Xin ; Yin, Zhinan ; Kong, Deling ; Yao, Zhi ; Hajjar, David P. ; Liu, Lin ; Liu, Qiang ; Han, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8d8ac1f419401b569e7e49dff6142c2c48aaddb41f0f3c0f992203cf965a18f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3T3-L1 Cells</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Butadienes - pharmacology</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - metabolism</topic><topic>Cholesterol Metabolism</topic><topic>Cholesterol, LDL - blood</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ERK</topic><topic>Gene Expression</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Lipids</topic><topic>Lipoprotein Receptor</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Nitriles - pharmacology</topic><topic>PCSK9</topic><topic>Peroxisome Proliferator-activated Receptor (PPAR)</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Pioglitazone</topic><topic>PPAR gamma - agonists</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Proprotein Convertase 9</topic><topic>Proprotein Convertases - genetics</topic><topic>Proprotein Convertases - metabolism</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Thiazolidinediones - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Chen, Yuanli</creatorcontrib><creatorcontrib>Hu, Wenquan</creatorcontrib><creatorcontrib>Li, Xiaoju</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Yin, Zhinan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Yao, Zhi</creatorcontrib><creatorcontrib>Hajjar, David P.</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Han, Jihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yajun</au><au>Chen, Yuanli</au><au>Hu, Wenquan</au><au>Li, Xiaoju</au><au>Yang, Xiaoxiao</au><au>Zhou, Xin</au><au>Yin, Zhinan</au><au>Kong, Deling</au><au>Yao, Zhi</au><au>Hajjar, David P.</au><au>Liu, Lin</au><au>Liu, Qiang</au><au>Han, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-07-06</date><risdate>2012</risdate><volume>287</volume><issue>28</issue><spage>23667</spage><epage>23677</epage><pages>23667-23677</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.
Background: PCSK9 regulates cholesterol homeostasis by enhancing the LDLR protein degradation. The effects of PPARγ on PCSK9 and LDLR expression remain unknown.
Results: PPARγ activation by ligands or dephosphorylation induces PCSK9 and LDLR expression and cholesterol metabolism.
Conclusion: PPARγ is an important transcriptional factor in regulating PCSK9 and LDLR expression.
Significance: We define a new signaling pathway that regulates PCSK9 and LDLR expression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22593575</pmid><doi>10.1074/jbc.M112.350181</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-07, Vol.287 (28), p.23667-23677 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390641 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | 3T3-L1 Cells Animals Blotting, Western Butadienes - pharmacology Cholesterol 7-alpha-Hydroxylase - genetics Cholesterol 7-alpha-Hydroxylase - metabolism Cholesterol Metabolism Cholesterol, LDL - blood Enzyme Inhibitors - pharmacology ERK Gene Expression Hep G2 Cells Humans Hypoglycemic Agents - pharmacology Lipids Lipoprotein Receptor Liver - drug effects Liver - metabolism Male Mice Mice, Inbred C57BL Microscopy, Fluorescence Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors Mitogen-Activated Protein Kinase 3 - metabolism Nitriles - pharmacology PCSK9 Peroxisome Proliferator-activated Receptor (PPAR) Phosphorylation Phosphorylation - drug effects Pioglitazone PPAR gamma - agonists PPAR gamma - genetics PPAR gamma - metabolism Proprotein Convertase 9 Proprotein Convertases - genetics Proprotein Convertases - metabolism Receptors, LDL - genetics Receptors, LDL - metabolism Reverse Transcriptase Polymerase Chain Reaction Serine Endopeptidases - genetics Serine Endopeptidases - metabolism Sterol Regulatory Element Binding Protein 2 - genetics Sterol Regulatory Element Binding Protein 2 - metabolism Thiazolidinediones - pharmacology |
title | Peroxisome Proliferator-activated Receptor γ Activation by Ligands and Dephosphorylation Induces Proprotein Convertase Subtilisin Kexin Type 9 and Low Density Lipoprotein Receptor Expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peroxisome%20Proliferator-activated%20Receptor%20%CE%B3%20Activation%20by%20Ligands%20and%20Dephosphorylation%20Induces%20Proprotein%20Convertase%20Subtilisin%20Kexin%20Type%209%20and%20Low%20Density%20Lipoprotein%20Receptor%20Expression&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Duan,%20Yajun&rft.date=2012-07-06&rft.volume=287&rft.issue=28&rft.spage=23667&rft.epage=23677&rft.pages=23667-23677&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.350181&rft_dat=%3Celsevier_pubme%3ES0021925820433745%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22593575&rft_els_id=S0021925820433745&rfr_iscdi=true |