Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells

T cells in the brains of Toxoplasma -infected mice are shown to move by Lévy-like walks. T cells walk the Lévy walk T cells are an important first point of contact between the immune system and invading pathogens. The currently accepted model of the early stages of the immune reaction, in which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2012-06, Vol.486 (7404), p.545-548
Hauptverfasser: Harris, Tajie H., Banigan, Edward J., Christian, David A., Konradt, Christoph, Tait Wojno, Elia D., Norose, Kazumi, Wilson, Emma H., John, Beena, Weninger, Wolfgang, Luster, Andrew D., Liu, Andrea J., Hunter, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 7404
container_start_page 545
container_title Nature (London)
container_volume 486
creator Harris, Tajie H.
Banigan, Edward J.
Christian, David A.
Konradt, Christoph
Tait Wojno, Elia D.
Norose, Kazumi
Wilson, Emma H.
John, Beena
Weninger, Wolfgang
Luster, Andrew D.
Liu, Andrea J.
Hunter, Christopher A.
description T cells in the brains of Toxoplasma -infected mice are shown to move by Lévy-like walks. T cells walk the Lévy walk T cells are an important first point of contact between the immune system and invading pathogens. The currently accepted model of the early stages of the immune reaction, in which the T cells encounter the invader, is that of a Brownian random walk. This paper reports the use of in vivo multiphoton microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the protozoon pathogen Toxoplasma gondii . Surprisingly, the in vivo imaging reveals that T cells in the brains of mice infected with T. gondii move not by Brownian-type motion but instead follow a Lévy walk pattern of runs punctuated by periodic pauses. Mathematical simulations suggest that this mode of movement increases the chances of finding targets at unknown locations. Chemokines have a central role in regulating processes essential to the immune function of T cells 1 , 2 , 3 , such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8 + T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8 + T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys 4 , 5 , 6 , 7 , 8 , 9 , 10 , and CXCL10 aids T cells in shortening the average time taken to find rare targets.
doi_str_mv 10.1038/nature11098
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022876617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c8accc0b839f7c94ae178a083c2b3530f1906e8a2cc6ec0ebd14c55ee7ef5e223</originalsourceid><addsrcrecordid>eNptkUFvEzEQhS1ERdPCiTvyBQmpLNjrXdt7QUIB2kqRuBSJm-VMxonbXbvYu0XlH_V38MdwlFBaidMc3qc3M-8R8pKzd5wJ_T7YcUrIOev0EzLjjZJVI7V6SmaM1bpiWshDcpTzJWOs5ap5Rg7rWtW1lmpGvp9iwGR7_wtXdPH77uaW_rT9VaY2rOi4QZpijzQ6Chsc4pUPmKkPdPDrZEcfw1ZC5xDGmOj8kz6hFxSw7_NzcuBsn_HFfh6Tb18-X8zPqsXX0_P5x0UFTaPHCrQFALbUonMKusYiV9qWm6FeilYwxzsmUdsaQCIwXK54A22LqNC1WNfimHzY-V5PywFXgGEs75jr5Aebbk203jxWgt-YdbwxQmglmq4YvNkbpPhjwjyaweftCzZgnLLhrESlpOSqoCc7FFLMOaG7X8OZ2XZhHnRR6FcPL7tn_4ZfgNd7wGawvUs2gM__OMmEbNWWe7vjcpHCGpO5jFMKJdX_7v0DyVCj3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022876617</pqid></control><display><type>article</type><title>Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Harris, Tajie H. ; Banigan, Edward J. ; Christian, David A. ; Konradt, Christoph ; Tait Wojno, Elia D. ; Norose, Kazumi ; Wilson, Emma H. ; John, Beena ; Weninger, Wolfgang ; Luster, Andrew D. ; Liu, Andrea J. ; Hunter, Christopher A.</creator><creatorcontrib>Harris, Tajie H. ; Banigan, Edward J. ; Christian, David A. ; Konradt, Christoph ; Tait Wojno, Elia D. ; Norose, Kazumi ; Wilson, Emma H. ; John, Beena ; Weninger, Wolfgang ; Luster, Andrew D. ; Liu, Andrea J. ; Hunter, Christopher A.</creatorcontrib><description>T cells in the brains of Toxoplasma -infected mice are shown to move by Lévy-like walks. T cells walk the Lévy walk T cells are an important first point of contact between the immune system and invading pathogens. The currently accepted model of the early stages of the immune reaction, in which the T cells encounter the invader, is that of a Brownian random walk. This paper reports the use of in vivo multiphoton microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the protozoon pathogen Toxoplasma gondii . Surprisingly, the in vivo imaging reveals that T cells in the brains of mice infected with T. gondii move not by Brownian-type motion but instead follow a Lévy walk pattern of runs punctuated by periodic pauses. Mathematical simulations suggest that this mode of movement increases the chances of finding targets at unknown locations. Chemokines have a central role in regulating processes essential to the immune function of T cells 1 , 2 , 3 , such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8 + T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8 + T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys 4 , 5 , 6 , 7 , 8 , 9 , 10 , and CXCL10 aids T cells in shortening the average time taken to find rare targets.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11098</identifier><identifier>PMID: 22722867</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127/98 ; 631/57 ; 631/80/84 ; Animals ; Biological and medical sciences ; Brain - immunology ; Brain - microbiology ; CD8-Positive T-Lymphocytes - cytology ; CD8-Positive T-Lymphocytes - immunology ; Cell Movement ; Chemokine CXCL10 - antagonists &amp; inhibitors ; Chemokine CXCL10 - genetics ; Chemokine CXCL10 - immunology ; Female ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Genetics of the immune response ; Humanities and Social Sciences ; Immunobiology ; letter ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; multidisciplinary ; Receptors, CXCR3 - genetics ; Receptors, CXCR3 - metabolism ; Science ; Science (multidisciplinary) ; Time Factors ; Toxoplasma - growth &amp; development ; Toxoplasma - immunology</subject><ispartof>Nature (London), 2012-06, Vol.486 (7404), p.545-548</ispartof><rights>Springer Nature Limited 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c8accc0b839f7c94ae178a083c2b3530f1906e8a2cc6ec0ebd14c55ee7ef5e223</citedby><cites>FETCH-LOGICAL-c448t-c8accc0b839f7c94ae178a083c2b3530f1906e8a2cc6ec0ebd14c55ee7ef5e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26036577$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22722867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Tajie H.</creatorcontrib><creatorcontrib>Banigan, Edward J.</creatorcontrib><creatorcontrib>Christian, David A.</creatorcontrib><creatorcontrib>Konradt, Christoph</creatorcontrib><creatorcontrib>Tait Wojno, Elia D.</creatorcontrib><creatorcontrib>Norose, Kazumi</creatorcontrib><creatorcontrib>Wilson, Emma H.</creatorcontrib><creatorcontrib>John, Beena</creatorcontrib><creatorcontrib>Weninger, Wolfgang</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><creatorcontrib>Liu, Andrea J.</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><title>Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>T cells in the brains of Toxoplasma -infected mice are shown to move by Lévy-like walks. T cells walk the Lévy walk T cells are an important first point of contact between the immune system and invading pathogens. The currently accepted model of the early stages of the immune reaction, in which the T cells encounter the invader, is that of a Brownian random walk. This paper reports the use of in vivo multiphoton microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the protozoon pathogen Toxoplasma gondii . Surprisingly, the in vivo imaging reveals that T cells in the brains of mice infected with T. gondii move not by Brownian-type motion but instead follow a Lévy walk pattern of runs punctuated by periodic pauses. Mathematical simulations suggest that this mode of movement increases the chances of finding targets at unknown locations. Chemokines have a central role in regulating processes essential to the immune function of T cells 1 , 2 , 3 , such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8 + T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8 + T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys 4 , 5 , 6 , 7 , 8 , 9 , 10 , and CXCL10 aids T cells in shortening the average time taken to find rare targets.</description><subject>631/250/127/98</subject><subject>631/57</subject><subject>631/80/84</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - immunology</subject><subject>Brain - microbiology</subject><subject>CD8-Positive T-Lymphocytes - cytology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Movement</subject><subject>Chemokine CXCL10 - antagonists &amp; inhibitors</subject><subject>Chemokine CXCL10 - genetics</subject><subject>Chemokine CXCL10 - immunology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Genetics of the immune response</subject><subject>Humanities and Social Sciences</subject><subject>Immunobiology</subject><subject>letter</subject><subject>Ligands</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Immunological</subject><subject>multidisciplinary</subject><subject>Receptors, CXCR3 - genetics</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time Factors</subject><subject>Toxoplasma - growth &amp; development</subject><subject>Toxoplasma - immunology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUFvEzEQhS1ERdPCiTvyBQmpLNjrXdt7QUIB2kqRuBSJm-VMxonbXbvYu0XlH_V38MdwlFBaidMc3qc3M-8R8pKzd5wJ_T7YcUrIOev0EzLjjZJVI7V6SmaM1bpiWshDcpTzJWOs5ap5Rg7rWtW1lmpGvp9iwGR7_wtXdPH77uaW_rT9VaY2rOi4QZpijzQ6Chsc4pUPmKkPdPDrZEcfw1ZC5xDGmOj8kz6hFxSw7_NzcuBsn_HFfh6Tb18-X8zPqsXX0_P5x0UFTaPHCrQFALbUonMKusYiV9qWm6FeilYwxzsmUdsaQCIwXK54A22LqNC1WNfimHzY-V5PywFXgGEs75jr5Aebbk203jxWgt-YdbwxQmglmq4YvNkbpPhjwjyaweftCzZgnLLhrESlpOSqoCc7FFLMOaG7X8OZ2XZhHnRR6FcPL7tn_4ZfgNd7wGawvUs2gM__OMmEbNWWe7vjcpHCGpO5jFMKJdX_7v0DyVCj3g</recordid><startdate>20120628</startdate><enddate>20120628</enddate><creator>Harris, Tajie H.</creator><creator>Banigan, Edward J.</creator><creator>Christian, David A.</creator><creator>Konradt, Christoph</creator><creator>Tait Wojno, Elia D.</creator><creator>Norose, Kazumi</creator><creator>Wilson, Emma H.</creator><creator>John, Beena</creator><creator>Weninger, Wolfgang</creator><creator>Luster, Andrew D.</creator><creator>Liu, Andrea J.</creator><creator>Hunter, Christopher A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120628</creationdate><title>Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells</title><author>Harris, Tajie H. ; Banigan, Edward J. ; Christian, David A. ; Konradt, Christoph ; Tait Wojno, Elia D. ; Norose, Kazumi ; Wilson, Emma H. ; John, Beena ; Weninger, Wolfgang ; Luster, Andrew D. ; Liu, Andrea J. ; Hunter, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c8accc0b839f7c94ae178a083c2b3530f1906e8a2cc6ec0ebd14c55ee7ef5e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/250/127/98</topic><topic>631/57</topic><topic>631/80/84</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - immunology</topic><topic>Brain - microbiology</topic><topic>CD8-Positive T-Lymphocytes - cytology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Movement</topic><topic>Chemokine CXCL10 - antagonists &amp; inhibitors</topic><topic>Chemokine CXCL10 - genetics</topic><topic>Chemokine CXCL10 - immunology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Genetics of the immune response</topic><topic>Humanities and Social Sciences</topic><topic>Immunobiology</topic><topic>letter</topic><topic>Ligands</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Immunological</topic><topic>multidisciplinary</topic><topic>Receptors, CXCR3 - genetics</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time Factors</topic><topic>Toxoplasma - growth &amp; development</topic><topic>Toxoplasma - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Tajie H.</creatorcontrib><creatorcontrib>Banigan, Edward J.</creatorcontrib><creatorcontrib>Christian, David A.</creatorcontrib><creatorcontrib>Konradt, Christoph</creatorcontrib><creatorcontrib>Tait Wojno, Elia D.</creatorcontrib><creatorcontrib>Norose, Kazumi</creatorcontrib><creatorcontrib>Wilson, Emma H.</creatorcontrib><creatorcontrib>John, Beena</creatorcontrib><creatorcontrib>Weninger, Wolfgang</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><creatorcontrib>Liu, Andrea J.</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Tajie H.</au><au>Banigan, Edward J.</au><au>Christian, David A.</au><au>Konradt, Christoph</au><au>Tait Wojno, Elia D.</au><au>Norose, Kazumi</au><au>Wilson, Emma H.</au><au>John, Beena</au><au>Weninger, Wolfgang</au><au>Luster, Andrew D.</au><au>Liu, Andrea J.</au><au>Hunter, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-06-28</date><risdate>2012</risdate><volume>486</volume><issue>7404</issue><spage>545</spage><epage>548</epage><pages>545-548</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>T cells in the brains of Toxoplasma -infected mice are shown to move by Lévy-like walks. T cells walk the Lévy walk T cells are an important first point of contact between the immune system and invading pathogens. The currently accepted model of the early stages of the immune reaction, in which the T cells encounter the invader, is that of a Brownian random walk. This paper reports the use of in vivo multiphoton microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the protozoon pathogen Toxoplasma gondii . Surprisingly, the in vivo imaging reveals that T cells in the brains of mice infected with T. gondii move not by Brownian-type motion but instead follow a Lévy walk pattern of runs punctuated by periodic pauses. Mathematical simulations suggest that this mode of movement increases the chances of finding targets at unknown locations. Chemokines have a central role in regulating processes essential to the immune function of T cells 1 , 2 , 3 , such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8 + T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8 + T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8 + T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys 4 , 5 , 6 , 7 , 8 , 9 , 10 , and CXCL10 aids T cells in shortening the average time taken to find rare targets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22722867</pmid><doi>10.1038/nature11098</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2012-06, Vol.486 (7404), p.545-548
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387349
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/250/127/98
631/57
631/80/84
Animals
Biological and medical sciences
Brain - immunology
Brain - microbiology
CD8-Positive T-Lymphocytes - cytology
CD8-Positive T-Lymphocytes - immunology
Cell Movement
Chemokine CXCL10 - antagonists & inhibitors
Chemokine CXCL10 - genetics
Chemokine CXCL10 - immunology
Female
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Genetics of the immune response
Humanities and Social Sciences
Immunobiology
letter
Ligands
Male
Mice
Mice, Inbred C57BL
Models, Immunological
multidisciplinary
Receptors, CXCR3 - genetics
Receptors, CXCR3 - metabolism
Science
Science (multidisciplinary)
Time Factors
Toxoplasma - growth & development
Toxoplasma - immunology
title Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20L%C3%A9vy%20walks%20and%20the%20role%20of%20chemokines%20in%20migration%20of%20effector%20CD8+%20T%20cells&rft.jtitle=Nature%20(London)&rft.au=Harris,%20Tajie%20H.&rft.date=2012-06-28&rft.volume=486&rft.issue=7404&rft.spage=545&rft.epage=548&rft.pages=545-548&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11098&rft_dat=%3Cproquest_pubme%3E1022876617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022876617&rft_id=info:pmid/22722867&rfr_iscdi=true